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Abstract

Sophisticated robots can greatly enhance the role of humans in space by relieving astronauts of
low level, tedious assembly and maintenance chores and allowing them to concentrate on higher level
tasks. Robots and astronauts can work together efficiently, as a team; but the robot must be capable
of accomplishing complex operations and yet be casy to use. Multiple cooperating manipulators are
essential to dexterity and can broaden greatly the types of activities the robot can achieve; adding
adaptive control can ease greatly robot usage by allowing the robot to change its own controller actions,
without human intervention, in response to changes in its environment. Previous work in the Aerospace
Robotics Laboratory (ARL) have shown the usefulness of a space robot with cooperating manipulators.
The research presented in this dissertation extends that work by adding adaptive control.

To help achieve this high level of robot sophistication, this research made several advances to
the field of nonlinear adaptive control of robotic systems. A nonlinear adaptive control algorithm
developed originally for control of robots, but requiring joint positions as inputs, was extended here
to handle the much more general case of manipulator endpoint-position commands. A new system
modelling technique, called system concatenation was developed to simplify the generation of a system
model for complicated systems, such as a free-flying multiple-manipulator robot system. Finally, the
task-space concept was introduced wherein the operator’s inputs specify only the robot’s sask. The
robot’s subsequent autonomous performance of each task still involves, of course, endpoint positions
and joint configurations as subsets.

The combination of these developments resulted in a new adaptive control framework that is capable
of continuously providing full adaptation capability to the complex space-robot system in all modes
of operation. The new adaptive control algorithm easily handles free-flying systems with multiple,
interacting manipulators, and extends naturally to even larger systems.

The new adaptive controller was experimentally demonstrated on an ideal testbed in the ARL—a
first-ever experimental model of a multi-manipulator, free-flying space robot that is capable of capturing
and manipulating free-floating objects without requiring human assistance. A graphical user interface
enhanced the robot usability: it enabled an operator situated at a remote location to issue high-level
task description commands to the robot, and to monitor robot activities as it then carried out each

assignment autonomously.
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Chapter 1

Introduction

This dissertation describes theoretical and experimental research on the nonlinear adaptive control of a
free-flying space robot with cooperating manipulators. The research was conducted in the Acrospace

Robotics Laboratory (ARL) at Stanford University from 1986 to 1992.

1.1 Motivation

Space presents new and exciting challenges. One challenge involves the construction and maintenance
of large space structures. While the space program can rely solely on astronauts to perform these duties,
doing so makes very inefficient use of their abilities. Robots will add great capabilities to the space
program, but only if they possess sufficient dexterity and skill. Multiple cooperative manipulators are

essential to dexterity; adaptive control helps significantly to provide the skill.

1.1.1 'What is Adaptive Control?

Adaptive control can change its controller actions to assure that the system continues to perform at
its best despite changes in the environment or to unknown payload and robot parameters. That is, it
adapss.

Adaptive control for robots is useful in several important, common situations: 1) When there is

p p
poor or no knowledge of the payload parameters, 2) When there are incomplete models of the robor,
3) When there are changes in the environment. While a robust, nonadaptive, controller may provide
g P

the same protections as an adaptive controller in these situations, it typically does so with substantially

1



2 Chapter 1. Introduction

reduced performance. The added complexity of an adaptive controller wins back that lost performance.

The most obvious situation in which to use adaptive control is for handling payloads that have
unknown or pootly known physical properties—for example, when handling damaged satellites where
the nature and extent of the damage are unknown. More generally, this capability relieves astronauts of
the duty to inform the robot of the detailed physical properties of each payload the robot is to handle.
While a comprehensive parts database can relieve much of this responsibility, adaptive control provides
protection in cases when the database is not completely accurate or is lacking.

Adaptive control also eases the basic controller design process. There are typically many aspects
of the robot itself that are either poorly modelled or not modelled. It is difficult to develop accurate
models for robots. In many cases, it is impossible to perform system identification to verify models of
space systems on the ground' By providing appropriate adjustable parameters to the controller, adaptive
control can adapt to model uncertainties to render their effects unimportant.

Another important benefit of adaptive control in space robots is its ability to adapt to the gradual
changes that are inevitable in all mechanical systems. Even if friction characteristics are well-characterized
at the outset, they will not remain so as the robot ages. A deterministic change—such as inertial property
variations as a robot uses up fuel—also can benefit from adaptive control. The controller will adaptively
update the controller to track the changes without user intervention or preplanned gain scheduling.
By adapting to system changes with time, servicing and reprogramming of the robots can be reduced

significantly.

1.1.2 What is 7ask-Space Control?

As a space robot carries out a typical operation, it needs to employ many control modes. For instance,
in acquiring a part for assembly, a free-flying robot would start typically in a joint-control mode, where
each joint is controlled to a known, “home” location. It then would enter base-control mode as the
robot thrusts to approach the part. When the part comes into view of the local cameras or sensors, the
robot would utilize manipulator-endpoint-control to track and grasp the part with the arm end effectors.

After grasping the part, the robot would switch to cooperative object-control mode?. After assembling

'The Space Shurtle Remote Manipulator System (RMS), for example, cannot support its own weight on the ground.

*Cooperative object-control should be distinguished from master/slave control, where command inputs must be given
to one “master” manipulator, and the other manipulator or manipulators follow the “master” according to some heuristics,
typically ignoring the dynamics of the payload. In object-control, the command inputs are specified directly in terms of the
desired motions of the objecz. The manipulators then cooperatively effect the requested object motion, taking into account
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and releasing the part, the robot might reenter joint-control while returning home or proceeding with
the next operation.

Rather than distinguishing the different control modes and supplying different controllers for each
control mode, this thesis unifies all the control modes into the ask-space framework. The zask-space
concept is a generalization of control modes. Task-space encompasses all control objectives, such as
object position, end-effector position, or joint positions. Choosing a particular sask-space control vector
is tantamount to choosing the control mode. A zask-space control vector, however, does not have to
be restricted to a single type of control mode. A task-space control vector for a multiple manipulator
robot, for example, can represent endpoint control for one manipulator and joint control for the other.
As another example, a free-flying space robot can choose a zask-space control vector to represent the
control of the positions of both the payload object and the free-flying base.

This thesis develops a zask-space controller that effects control for any choice of #ask-space control
vector. Because the controller is formulated in zask-space, it treats all control modes equally. Switching
control modes essentially entails switching only the zask-space control vector. The basic controller

structure is unchanged, and a smooth transition is achieved.

1.2 Research Goals

The goal of this research effort is to develop an adaptive control framework that is sophisticated enough
to control a free-flying space robot, yet broad enough to be generally applicable. The resulting adaptive

control must meet the following requirements:

e The adaptive control must furnish adaptation and control to multiple, cooperating manipulators
from a free-flying base and also to simpler, single-manipulator fixed-base robots within the same

framework.
e The adaptive control must be able to supply object-level control during cooperative manipulation.
o The adaptive control must provide #otal system adapration.

e The adaptive control must have task-space control capability to provide multiple control modes

and to allow “graceful” transitions between control modes.

the dynamics of the complete system.
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o The adaptive control must be implementable.

Multiple manipulators vastly increase the numbers and types of tasks a robot can perform. They
provide dexterity well beyond what a single manipulator is capable of furnishing. Two manipulators
grasping a long object at different locations provides better positioning accuracy than a single manipula-
tor grasping one end or the middle of the object. Moreover, smaller motors in cooperating manipulators

can provide the same torque capabilities as much larger motors of a single manipulator system.

It is equally important that, in providing multiple-manipulator cooperative control, the adaptive
algorithm be able to handle object-level control, wherein the operator directs the motion, or specifies
the destination, of the manipulated objecz. This eliminates the need for the physically and mentally
demanding tasks of hand-in-glove teleoperation. It permits the human operator to focus totally on the

task to be done.

Total system adaptation is an important goal to achieve. It is more than just “payload adapration” or
just “manipulator adaptation”. Most existing nonlinear adaptive controllers for robots are geared toward
identifying either the robot’s physical parameters, or unknown payload parameters, but not both. To
provide maximum flexibility, the new adaptive controller needs to have the capability of adapting to
both types of parameter changes simultaneously, without resorting to separate adaptation controllers.
The adaptive algorithm also should be able to distinguish robot parameters from payload parameters,
to allow for more intelligent setting of adaptation gains. Since robot parameters typically are better
known and change more slowly, heavier weighting placed on adapting to changes in unknown payload

parameters permits faster and more accurate adaptation, while still allowing adaptation to changes in

the robot.

Adaptive control should provide rask-space control capability. Doing so makes adaptive control
available at all times throughout a complex operation and ensures that the transitions between control

modes are smooth.

Because the adaptive algorithm must be implementable, the algorithm must not overwhelm the
computational capabilities of present computers. The algorithm must be simple, but effective; and it

must extend easily to even larger systems.
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1.3 Contributions

In meeting the challenging set of research goals, this research has generated an adaptive control frame-
work that is very general and easily extensible to even larger, more complex systems than the free-flying
robot with cooperating manipulators for which it was developed. Yet, this adaptive control framework
is equally applicable to simple, single-arm fixed-base robots.

This research takes advantage of the nonlinear, joint-space adaptive controllers already developed
for single-arm, fixed-base robots [6]. Because a useful robot is expected to be capable of many control
modes—including object-based control, endpoint control and joint control—this research defines sask-
space control—encompassing all control modes—and extends the class of adaptive algorithms from
joint-control to sask-space control, capable of controlling in any mode utilizing the same adaptive
control framework. To ease implementation of the new sask-space adaptive controller for multiple
cooperative manipulators, a new modelling technique called system concatenation is also developed. The
combination of zask-space adaptive control and system concasenation results in a generalized adaptive
control framework for rigid-link robotic system.

The research contributions described in this dissertation include:

e Framework. Development of a new general adaptive control framework—the adaptive task-space
framework—that is capable of providing full adapration to a free-flying space robot with two
cooperating manipulators in all modes of operation. The generality allows the adaptive algorithm
to extend readily beyond the scope of a single space robot to handle larger systems, including, for

example, multiple robots with any number of manipulators.

e Task Space. Extension and generalization of a joint-space, nonlinear, adaptive control algorithm,
based on inverse dynamics, to control in the #ask space, which represents a broader class of control
inputs, including, but not limited to, cooperative object control, as well as endpoint control and
joint control. This extension provides a means for the adaptive controller to operate in all robot

control modes.

o System Concatenation Method. Formulation of the system concatenation approach for efficient,
incremental generation of system models for multiple, interacting systems. System concatenation
takes full advantage of models already developed for each manipulator or robot subsystem to

minimize the additional effort in deriving the total system models used for adaptation. This
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formulation eliminates the need to develop closed-kinematic-chain equations of motion for
multiple manipulators grasping acommon object; and it decreases model complexity and increases

computational speed without loss in fidelity.

o Graphical-User-Interface Integration. Full integration of the new adaptive control algorithm into
a hierarchical control architecture that includes a graphical user interface and a finite-state-table
programming environment. The graphical user interface provides the user with an easy method
for directly specifying object motions without engaging in fine manipulation details, while the
finite-state-table programming provides a degree of autonomy by handling real-time interactions
and necessary control-mode transitions to achieve a requested task. Modular design for the
adaptive controller allows it to integrate with this hierarchical control architecture without losing

its flexibility in handling multiple control modes.

o Experimental Verification. Experimental verification of the new adaptive controller, in the hi-
erarchical control environment, on the Multi-Manipulator Free-Flying Space Robot of the the
Acrospace Robotics Laboratory (ARL), is shown in Figure 1.1. The robot utilizes an air bearing
to reproduce the zero-g, drag-free conditions of space very accurately in two dimensions. This
two-armed space robot is totally self-contained, carrying on-board fuel, power, computers, and
wireless communications. It is capable of executing semi-autonomous tasks at the direction of a

user situated at an off-board computer workstation.

o Vision System. The author’s development, for the ARL, of the “Point-Grabber II” vision system
that, together with software drivers developed in ARL, is capable of tracking bright spots at 60
Hz with better than 1/20 pixel resolution. Duplicates of this high-speed vision system serve as a

surrogate global positioning sensor, and as a local on-board end-point sensor®.

1.4 Review of Related Research

The new rask-space adaptive control for a space robot presented in this thesis successfully integrates
three control disciplines: cooperative manipulation, space robot control, and nonlinear adaptive control.

Accordingly, this review of the related research is divided into three, albeit intersecting, sections.

3This system has been adopted generically for experiments throughout the laboratory.
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Figure 1.1: Multi-Manipulator Free-Flying Space Robot

This experimental space robot is used to verify the performance of the new adaptive controller
developed in this thesis. The robot uses an air cushion to faithfully simulate the drag-free

conditions of space in a two-dimensional plane.
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1.4.1 Object-Based Cooperative Manipulation

The most promising cosperative multiple manipulator control strategies involve object motion control.
They are promising because of successful experimental demonstrations, and because of the easy interface
they provide to higher level controllers; specifically, the higher level controller needs to specify only the
object behavior, without having to worry about detailed manipulator motions.

There are roughly three categories of object motion control: object position control, hybrid object
force/position control, and object impedance control. With object position control, only the object’;
position is controlled[25, 21], providing a mechanically “stiff” system. This can be problematic
when coming into contact with the environment?. Hybrid object force/position control controls the
object’s position in certain directions, while controlling the object’s contact forces in other directions
[41, 40, 12, 51, 16]. Hybrid schemes, however, are difficult to implement, requiring control “mode”
changes as the object comes into contact, and the continual updating of the force and position degrees
of freedom. On the other hand, object impedance control, developed by Schneider at ARL, provides a
“compliant” response at all times by maintaining a relationship between the object’s position, velocity,
and force on the environment [33, 32, 46]. No control switching is necessary as the object comes into
contact with its environment.

Schneider [32] provides a detailed review of nonadaptive multiple-manipulator control approaches.

1.4.2 Nonadaptive Space Robotics Research

Alexander [1] pioneered at ARL the research in high-fidelity space robotics experimentation with a
demonstration of the control of a single-arm free-floating space robot. He did not utilize thrusters.
The controller is essentially a computed-torque controller, with special partitioning of the inertia and
nonlinear matrices. This partitioning, unfortunately, is difficult to extend to multiple-arm control.
It is even more difficult to extend to adaptive control, because the partitioning must be performed
symbolically to determine the adaptable parameters.

Umetani and Yoshida [44, 45] introduced the Generalized Jacobian for maintaining zero momentum
of a free-flying base while controlling its single manipulator. Their development did not consider

multiple manipulators, and did not extend the Generalized Jacobian beyond zero momentum control.

4Rather than a smooth contact, the “stiffness” may cause the object bounce off the contacting surface, possibly damaging
the object.
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Umetani and Yoshida demonstrated their controller experimentally.

Carignan (8] also performed experiments on manipulation from a free-flying robot using a sliding-
mode controller. This controller only partially compensated for the interactions between the manipu-
lator and the robot body. Unfortunately, the performance was limited by the experimental hardware.

Koningstein and Ullman [20, 19] developed at ARL the System Jacobian for controlling 2 free-flying
robot with multiple manipulators. The System Jacobian is essentially a variation of the Umetani and
Yoshida's Generalized Jacobian that allows the control of the free-flying robot base and the handling
of the constraints in a closed kinematic chain during cooperative manipulation. The System Jacobian
also allows the control of the system momentum to be something other than zero. The controller is
computed-torque, but implemented via Koningstein’s efficient recursive algorithm.

Ullman [43] further extended the work to a full hierarchical controller, incorporating graphical
user interface (GUI), state-transition modules. Ullman’s research culminated in enabling the space
robot to track, chase, and capture free-flying objects and deliver them to operator-specified locations,
all with very simple operator commands. Dickson [10] made additional advances by developing a
multiple-robot controller: Each space robot possesses a pair of arms; and they cooperatively manipulate
a single object.

A more detailed review of space robotics research can be found in Ullman [43].

None of the research described in this section incorporates adaptive control. The goal of this
dissertation is to develop an adaptive control strategy that will retain a// the capabilities of Ullman’s

controller for a free-flying robot with multiple, cooperating manipulators.

1.4.3 Nonlinear Adaptive Robot Control

Craig [9] pioneered the research in nonlinear adaptive control for robotic manipulators. He developed
a computed-torque adaptive controller that utilized the standard computed-torque controller as the
standard controller block. A drawback of the adaptive portion of the controller is that it required
measured joint accelerations and a time-consuming matrix inverse of the system inertia matrix. Craig
successfully demonstrated the computed-torque adaptive algorithm on a PUMA arm. The computed-
torque adaptive controller applies only to single manipulators under joint control.

Slotine and Li [37, 39] derived the sliding-mode adaptive controller that does not require the
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inverse of the inertia matrix. This controller is also an inverse-dynamics algorithm that attempts to
cancel directly the nonlinear dynamics of the manipulator. The Lyapunov-based stability proof indicates
that the tracking error approaches zero by “sliding” along a surface in a multi-dimensional phase space.
Additional resecarch extended the algorithm by adding exponentially forgetting least-squares [22] to
improve convergence when there is not enough excitation. Slotine also extended the algorithm to
handle endpoint, Cartesian-space control [38]. Slotine and Li have shown impressive capabilities of
this adaptive controller experimentally, but, again, only for single fixed-base manipulators under joint

control.

Bayard and Wen [48, 6] developed theoretically an entire class of nonlinear adaptive control
algorithms, again based on inverse dynamics. They have demonstrated that the new class of algorithms
incorporates Craig’s computed-torque adaptive algorithm. Bayard and Wen’s algorithms also, in general,
do not require the inverse of the inertia matrix for adaptation. Although these algorithms are more
general, they have been met with much less enthusiasm than Slotine’s sliding-mode adaptive control,
mainly because of the complexity of the Lyapunov stability proofs. This added complexity does,
however, allow them to prove the stability for a broad class of adaptive algorithms. Again, Bayard and
Wen developed their algorithms for a single robotic manipulator under joint control. They did not

perform any experiments.

Hsia [13] and Ortega and Spong [26] provide good reviews of the field of adaptive control for
single, rigid robots. They compare and contrast the various approaches, and provide unified views of

these adaptive algorithms.

Zanutta [50] presented the only published experimental research on adaptive control of mulriple
cooperating manipulators, which he did at ARL. He utilized Schneider’s object impedance control [32]
in conjunction with an inverse-dynamics-based adaptive control that is similar to Slotine’s sliding-
mode adaptive control. The object impedance control development, however, separates control into
two parts: the calculation of necessary forces to effect desired object motion, and the calculation of
required actuator torques to cffect those forces at the grasp points of the manipulator. The adaptive
control applies only to the first stage, adapting to unknown payloads. Adaptation to unknowns in the
manipulators must be performed separately, by another means. Zanutta experimentally demonstrated
the adaptive object impedance controller on a pair of fully-cooperating manipulators operating from a

fixed base.
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Additionally, Kim, Walker and Dionise [18] and Hu and Goldenberg [14] presented computer
simulations of adaptive control of multiple manipulators. Kim er. 4l relied on a master/slave
configuration for the controller, and involved a complex set of equations and constraints to handle
the closed kinematic loops formed by the two manipulators holding an object. Hu and Goldenberg

considered a hybrid position- and force-control scheme, but required the inversion of the inertia matrix.

The research presented in this thesis draws on many of the ideas from these researchers. It builds
and extends Bayard and Wen’s class of adaptive algorithms to handle endpoint control—an extension
that is then further developed to handle the more general sask-space control. Koningstein's method
of handling a closed kinematic chain in a control system is generalized, and culminates in the system
concatenation concept. The Generalized Jacobian ideas of Umetani and Yoshida, and the Jacobian
augmentation methods of Koningstein, Ullman, et. al., are further extended to the zask space.

A final note: In the system modelling arena, parallel theoretical research by Meldrum [23, 24]
develops efficient, order-(IN) recursive algorithms for computing control and adaptive update equations.
These algorithms are based on the spatial operator ideas with Kalman filtering techniques developed by

Rodriquez (29, 30].

1.5 Reader’s Guide

This thesis is organized into ten chapters and five appendices. Chapter 1 contains the motivation,
research goals, contributions, a review of related research, and this Reader’s Guide.

Chapter 2 develops the system modelling. It introduces the notation used throughout the disser-
tation. Chapter 3 describes the control approach by reviewing a nonlinear adaptive control method
developed by Bayard and Wen while they were at JPL. This joint-based adaptive controller serves as a
starting point for the research presented in this thesis. The chapter discusses the basic clements of this
joint-based adaptive algorithm, and highlights the salient aspects of the Lyapunov-based stability and
convergence proof.

Chapters 4, 5, and 6 describe developments that generalize the adaptive control framework: exten-
sions of the joint-based adaptive controller, task-space concept, and system concatenation. Although the
latter two new developments can also stand on their own in a nonadaptive environment, their concepts

enable the generalization of the adaptive control framework without greatly increasing the complexity
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of resulting algorithms.

Chapter 7 merges the developments to formally present the zask-space adaptive controller, and
describes its properties.

Chapter 8 presents the experimental system, and briefly describes the hierarchical control architec-
ture. This chapter outlines the process of integrating the new adaptive controller into the experimental
system.

Chapter 9 presents experimental results using the new adaptive algorithm. The controller per-
formance is compared with that of nonadaptive controllers operating either with accurate or with
incomplete knowledge of system parameters.

Chapter 10 brings this dissertation to an end with conclusions drawn from the research and
suggestions for future research directions.

Appendix A provides more detailed calculations used in the Lyapunov stability proofs. Appendix B
includes the user’s manual for the Point Grabber II vision system, developed by the author. It describes
the design and the software algorithms that enable it to achieve high-resolution sensing. Appendix C
details the calibration procedures for calibrating the vision system and motor torque constants, and
other sensors. Appendix D supplies the state transition diagrams used for each space robot task. Finally,
Appendix E lists the controller input files, representing system parameters, sensor calibration values,

controller gains and adaptive gains.



Chapter 2

Modelling

This chapter introduces the notation used in this thesis, and it establishes the mathematical model, i.e.,
equations of motion, used to describe a robotic system. Section 2.1 presents the model most commonly
utilized to describe rigid-link robots. Section 2.2 describes an alternate parameterization of the model
that aids adaptive control. This parameterization, shown by An, et. al,, [2] to be applicable to rigid
robots, isolates the physical parameters of the robotic system into a single mathematical vector'. A

simple example of a planar two-link manipulator serves to illustrate key concepts throughout the thesis.

2.1 System Model

The equations of motion of a manipulator system consisting of rigid bodies with n degrees of freedom

(DOF) can be described by the following form:
F = M(q)u + C(q,u)u + G(q) 2.1)

where q € IR™ is a mathematical vector of generalized coordinates?, u € R" is a mathematical vector

of generalized speeds, F € R™ is the mathematical vector of generalized active forces®, M(q) € R™*"

1A mathematical vector is a collection of scalar terms placed into a vector notation. This should be distinguished from
a physical vector, which describes a direction and magnitude in three-dimensional space. Mathematical vector and matrix
notation can greatly simplify the form of the equations presented in this thesis.

2Generalized coordinates are a convenient set of coordinates that is sufficient to describe the configuration of a system.
Although these convenient coordinates are typically measurable quantities, such as angles and lengths, they do not have to be.
In the modelling of systems with distributed flexibility, for example, generalized coordinates “measure” the mode shapes of the
system, which are difficult to determine with a ruler and protractor.

3This is distinguished from a physical force vector. Each element of the generalized force represents the sum of the
components of all physical forces effecting motion in a particular degree of freedom.

13
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is the symmetric, positive-definite inertia matrix, C(q,u) € R"*" is the matrix of Coriolis and

centrifugal terms, and G(q) € R" is the vector of gravity torques. The actual terms of the mass

matrix, the Coriolis and centrifugal matrix, and the gravity torque vector depend on the choice of the

generalized coordinates and generalized speeds. Additionally, for each choice of generalized speeds,

the matrix C(q, u) is not uniquely defined, although the vector C(q, u)u is unique. An appropriate

choice of C(q, u) can greatly aid the development of an adaptive controller, as Chapter 3 will describe.
The definition for generalized speeds is [15]:

u £ W(q)q+ Wi(q) (2.2)

where W(q) is an n X n matrix of functions of q and time ¢, and Wy(q) is an n X 1 vector of functions
of q and time ¢. The W,(q) term is nonzero only if there are time-dependent and uncontrolled forcing
functions, which are rare in robotics.

In robotics, the common choice for the generalized coordinates, q, corresponds with the joint angles
or positions of a2 manipulator, and u corresponds with the joint speeds?, ¢. The generalized forces, F,

are assumed to be equal to the actuator torques or forces, T, arriving at the familiar form:

7T = M(q)q + C(q,9)q + G(q) (2.3)

Strictly speaking, however, T is itself a generalized quantity, and depends on the actuator arrangement
for a manipulator. Each term of 7 represents only the ner applied force or torque for each degree of
freedom—forces and torques that may be supplied by a combination actuators.

One benefit of the more generalized expression of Equation (2.1) is that appropriate choices for
generalized speeds can ease implementation by simplifying the individual terms in the system matrices?,
M(q), C(q, u), G(q). In robots with revolute joints, it is beneficial to choose generalized speeds to
correspond with absolute rotational speeds of the links rather than relative speeds of each link with

respect to its inboard link. In this special case,
u=Wgq (2.4)

where W is a constant matrix of zeros and ones. For a thorough discussion of generalized coordinates
and generalized speeds, see [15].

“In this situation W (q) is the (constant) identity matrix, and W (q) is zero.

3Essentially, the kinematic configuration of a mechanical system may be developed utilizing a convenient set of coordinates,
and the dynamic model may be developed utilizing a convenient set of generalized speeds, where the generalized speeds need
not be restricted to be just the time derivatives of the chosen set of coordinates.
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Example
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Figure 2.1: Planar Two-Link Fixed-Base Manipulator

q1 and q; represent the shoulder and elbow joint angles. my, I, and ) are the mass, moment
of inertia, and length of the upper link, while m,, I>, and l; are those of the lower link. I} and
I3 represent the center of mass locations of each link, which, for simplicity, are assumed to be
along the central axis of each link.

The simple planar two-link manipulator system illustrates the differences between these two forms
for the equations of motion. The same example will be used throughout the rest of the thesis for
clarifying new concepts. Figure 2.1 introduces the two-link arm system, the notation used for the
physical parameters of the system, and the definitions of the generalized coordinates. The more

standard equations of motion used by roboticists in for form of Equation (2.3) can be written as:

mi 32 4+ mali? + myl2
- the TR A mal3? + mahlicos(g) + L | | 4
= +2malil5 cos(qz) + h + Iz .
T2 2 2 q2
mal3* + malilf cos(q2) + I mal3* + I

—-mal; l; sin(qz)q'z —m;ly 5 sin(qz) (1 + Q2) qQ 2.5)

mzlll; sin(qz)tjl 0 (jz
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or
T = M(q)q+C(q,9)q

Because the arm operates in a plane perpendicular to the direction of gravity, there are no gravitational
torques.

Defining the generalized speeds as the absolute angular rotation of each link gives:

U j 10 j
U U}l - 0 (2.6)
uz g+ ¢ 11 7}
The generalized equations of motion, in the form of Equation (2.1), simplifies to:
Al | mfP+mli+ L malilicos(q) | |
1 33 mzlﬂ; COS(Qz) m2l§2 + I 15}
0 —myly15sin(qz)u u
" 21115 sin(g2 )u, 1 2.7)
mzllli sin(qz)'uI 0 (%)

or
F = M(q)u+C(q,uju

in which each term of F represents the total torque applied to each manipulator link, rather than the

torque of each actuator:

) 3} p3 0 1 ‘g

2.2 Alternate Parameterization

Researchers have shown that the dynamics of serial-kinematic-chained rigid robots allows an alternate
parameterization of the equations of motion (2, 17, 4]. This linear-in-the-parameters formulation® is

well suited for adaptive control. It separates all the physical parameters of the system—the masses,

SMore precisely, this is a parameterization that is linear in terms of a set of physical parameters of the system. The equations
of motion are unchanged and remain nonlinear. The “parameterization” is simply another way of writing the same set of
equations of motion. This property can be shown relatively easily by examining the Newton-Euler equations for the robotic
system (see [2]). It is not clear whether this property is preserved in general for robotic systems thar include closed kinematic
chains.
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moments of inertia, centers of mass locations, link lengths—from the states of the system, resulting in

a single vector with p parameters, 8 € R”:
F = M(q)u + C(q,u)u + G(q) = Y(q,u,u,u)6 (2.9)

where Y(q,u,u,1) € R™*P is the regressor matrix’, containing functions of the generalized coordi-
nates, generalized speeds and their time derivatives. An adaptive controller needs to adjust only this

single parameter vector to adjust its model of the system.

Example

Utilizing the linear-in-the-parameters formulation, the equations of motion® for the simple planar arm

example, using the more standard notation for robotics given by Equation (2.3), can be expressed as:

. . 2 cos(q2)gh + cos(q2)Ga ml[TZ +mylt + 1,
! q q+q2 _ ' . . .
23 —sin(g2)d1 241 + ¢2) myl3* + I
T2 .
0 G1+q2 COS(Q2)§1 + su](qz)q'% mzlll;

or alternatively using generalized speeds and total torques:

m]l;‘2 + mzlf + I

2 U 0 cos(gz)uy — sin(gz)u3 ,
2=7 . m2l§‘ + Iz
F @7 0 %, ocos(g)uy + sin(qa )u?
mzllli
= Y(q,u,u,u)@ (2.11)
For both representations,
mll‘{z + mzl% + .[1
6= mzl;2 + I (2.12)

mzl 1 l ;
is the parameter vector. The number of model parameters in 8, three, does not necessarily match the

number of physical parameters, six; and the model parameters can be complicated combinations of

7The two u’s in the notation for the regressor, Y(q, u,u,u), correspond to the u’s in the expression, C(q,u)u. It is
sometimes useful to distinguish between the two vectors to emphasize that Y(q,u,u, i) is nonlinear in u. Additionally,
controllers that choose to use a control such as F = M(q)iig + C(q, u)ug + G(q) can be represented by F = Y(q, u, ug, 14)6.
See [48] for a variety of different of controllers.

8 Please note that the equations of motion are still nonlinear.
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the physical parameters. Additionally, utilizing the model parameters, which has rank 3, one cannot
uniquely determine all six physical parameters. This example illustrates that it is therefore often not
possible to identify the individual link masses or moments of inertias or lengths from the model

parameters.

2.3 Summary

This chapter provided two parameterizations for the equations of motion of robotic systems: the
standard formulation used by most roboticists and the linear-in-the-parametersformulation. The linear-
in-the-parametersformulation extracts the model parameters into a single mathematical vector and, thus,
is well suited for adaptive control. Hence, the adaptive control algorithms presented in this dissertation

takes full advantage of this alternate parameterization.



Chapter 3

Control Approach

This chapter lays the groundwork for the development of the new rask-space adaptive controller
presented later in the thesis. It also presents the key components of the stability and convergence proof
that will be extended from joint-space control to #ask-space control. Section 3.1 introduces the set
of control and adaptation laws, developed by Bayard and Wen, that serves as a basis for this research.
The control laws are inverse-dynamics based, similar to the computed-torque control law; the adaptive
parameter-update laws are derived from Lyapunov analysis to guarantee stability. Section 3.2 describes
the properties of the controller, and Section 3.3 concludes with a stability and convergence proof,
based on a Lyapunov function. The limitation to joint-space control of this baseline adaptive control

algorithm will be extended in subsequent chapters.

3.1 A Specific Adaptive Control Algorithm

The Bayard and Wen adaptive control algorithms for robotic manipulators represent a class of inverse-
dynamics-based controllers [5]. Bayard and Wen have shown, with appropriate choices of the control
laws, that this class of algorithms incorporate Craig’s computed-torque adaptive controller [9]. Most
controllers in their class of algorithms, however, are casier to implement than the computed-torque
adaptive controller, because they do not require measured accelerations or the inverse of the inertia
matrix. In computer simulations, the Bayard and Wen algorithm also showed less sensitivity to
sampling rate and velocity measurement noise than the Slotine and Li sliding-mode adaptive control

[7]. Additionally, Bayard and Wen have shown that their algorithms, in the nonadaptive case, are

19
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exponentially stable [48].

This thesis concentrates on extending the Bayard and Wen algorithms to sask-space control needed
by the space robot. It should be noted, however, that similar extensions to the other adaptive algorithms
will make them equally suitable for task-space control.

Because most of the robotic adaptive control literature uses the more specific form of equations of
motion defined by Equation (2.3), initial development of the adaptive control algorithm in this thesis
will also use this form. Chapter 4 will generalize the results to utilize generalized speeds for equations
of motion given by Equation (2.1).

The development of the adaptive algorithm is illustrated with the following control law’.

T = M(q)dq + C(q,44)qs + G(q) + Ky + Kpq (3.1)

where (-4) are the desired trajectory quantities and

O2Ca)-0) (3.2)

are the trajectory errors. Kp > 0 isann x n diagonal, position gain matrix, and Ky > Oisann x n
diagonal, velocity gain matrix. This is an inverse-dynamics controller, where the first three terms of
Equation (3.1) represent feedforward? terms that cancel much of the dynamics of the plant, and the
last two terms effectively provide proportional-derivative (PD) feedback to the system to account for
residual trajectory-tracking errors.

For adaptive control when the parameters are unknown, M(q), C(q, §4), and G(q) are replaced
by their estimates, Mi(q), C(q, 44), and G(q). Using these estimated quantities and the /inear-in-the-
parameters parameterization given in Equation (2.9), the adaptive control of Equation (3.1) is modified
to:

T = M(q)ds + €(q, 44)aa + G(q) + Kvg + Kpq (3.3)

This control law can also be written in terms of the parameter vector as cither of the following:

T (2=9) Y(q’ ‘ida qd) Qd)a + KV<~1 + KP& (3.49)

= Y(q,44,44,40)0 + Kva + Kpg — Y(q, 44, 44, 44)0 (3.5)
!This is Control Law § in [6] or Control Law 9 in [47].

?It can be argued thar these are actually feedback terms, since they include measured states, q, but this author adopts a
definition that a term is *feedback” only if it includes errom; i.e., the differences berween commanded and actual quantities.
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where the number, (2.9), beneath the equality sign is an equation reference, and
626-06 (3.6)

is the parameter error vector. The last term in Equation (3.5) represents the difference between the
nonadaptive and adaptive control laws. Note that all the unknowns in the system are contained in the

parameter estimate vector, 6.

The parameter adaptation law is:
8 = I'Y7(q,44,44,4a) (d+ cq) (37)

where I' > 0 is an 7 X r diagonal, positive-definite matrix of parameter update gains, and ¢ > 0
is a scalar weighting between the velocity and position errors. This adaptive update law results from

Lyapunov analysis, and is derived to guarantee the convergence of trajectory-tracking errors.

3.2 Controller Properties

The block diagram in Figure 3.1 illustrates the structure of the adaptive controller. Following are some

properties of this controller:

e Inverse-dynamics controller. The full nonlinear dynamics of the manipulartor system is included
in the “Inverse Dynamics” block. These calculations compensate for much of the nonlinear
plant behavior, minimizing trajectory errors. This eases the burden on the PD “Feedback” block,
allowing for more aggressive PD gains to handle any residual errors. The parameter vector, 8, of

the “Inverse Dynamics” block is adaptively updated to change the plant model.

e Joint-space control. This standard controller applies for only joint control. The feedback is taken
in joint-space. The controller thus operates to reduce errors in joint trajectories. The adapration

law also updates the parameters based on joint-space errors.

o Tracking-error adaptive algorithm. The Bayard and Wen adaptive algorithms are tracking-error-
based algorithms. The algorithms provide asymptotic convergence of the tracking error to zero,
but do not guarantee parameter convergence. Parameter convergence requires sufficient excitation
in the trajectories. This limitation poses no serious problems for most robotic activities where

minimizing tracking error is the prime objective.
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Figure 3.1: Block Diagram of Bayard and Wen’s Adaptive Controller

This is an inverse-dynamics joint-space controller. The plant model is used to feedforward
the nonlinear dynamics to cancel much of the plant nonlinearity. The PD feedback and the
adaptive updates are based on the joint trajectory errors.

Controller insensitivity to sensor noise. The inverse dynamics block of the controller uses the desired
generalized speeds, rather than the measured values. This provides for lower sensitivity to minor
sensor noise during regulation. Since there is no requested motion, the desired generalized speeds
and accelerations are zero, which in turn causes all terms of the regressor, Y(q, 44, G4, qq) to be
zero. This effectively disables the inverse dynamics feedforward block. During motion, feedback
keeps the actual trajectories close to the desired ones, ensuring that the inverse dynamics block

still produces adequate compensation for the nonlinear plant dynamics.

Adaptation insensitivity to sensor noise. Because the parameter adaptation law uses the same
regressor, the adaptation is equally insensitive to minor sensor noise during regulation. There is
no fear of parameter drift caused by measurement noise or small sensor biases. There is also no

need for explicitly enabling and disabling parameter updates during operation.
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3.3 Lyapunov Proof

Bayard and Wen proved the stability and convergence of their adaptive algorithms based on a Lyapunov
Function [6, 48, 47]. One typically chooses as candidate a Lyapunov Function—a scalar function—
to represent the positive-definite “energy” contained in the tracking and parameter estimation errors.
Proving that this energy is always decreasing demonstrates that the tracking and estimation errors
converge to zero. This is equivalent to showing that the time-derivative of the chosen Lyapunov
Function is always negative, which in turn establishes that the system is stable.

Because the development of the ask-space adaptive controller in subsequent chapters is based on
the adaptive algorithm given in this chapter, the stability and convergence proof found in [47] will
be repeated here, with some minor corrections and modifications. An outline of the proof describes,
in words, the major steps involved in the proof. It also illustrates the typical process of developing
Lyapunov proofs. The detailed steps of the stability proof follow in a separate section, with supporting

calculations appearing in Appendix A.

3.3.1 Proof Outline

The stability proof starts by examining the controller with exact plant knowledge and no adaptation.
Consider the following Lyapunov Function for the system operating with the nonadaptive control law

given by Equation (3.1):
-2 l.T L l_ 7 ~ , ~T ks
V(@at) = 5q M(@)a+ ;4 Kp+cKy)q+eq M(q)q (3.8)

The first term is square in the joint-velocity tracking error, and as such represents the “energy” in the
velocity errors>. Similarly, the second term is square in the joint-position tracking errors, and represents
the “energy” in the position errors. Since the first two terms are squared terms, they are always positive.
The third term is a cross product term between the velocity and position errors—this term is not
guaranteed to be positive, so the positive-definiteness of Equation (3.8) must be shown. The scalar,
¢ > 0, is a weighting on the cross term—c is the same weighting that appears in the adaptive parameter
update law in Equation (3.7).

Noting that M(q), K p, and Ky are symmetric, the time-derivative of the Lyapunov Function can

3Recall that %QTM(q)q is the kinetic energy of the manipulator system, and note the similarity with the first term of the
Lyapunov Function of Equation (3.8).
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be written as:

e A T 2 l.T_. o AT -
V(q,q,t) = q M(q)q+ 54 M(q,q9)g+q (Kp+cKy)q
AT K3 ~Ta' R ~ i3
+cq M(q)q + cd"M(q,9)q + cg"M(q)q (3.9)

The suability proof involves showing that the chosen Lyapunov Function, Equation (3.8), is positive-

definite; and that its derivative, Equation (3.9), is negative-semi-definite. It follows these steps:

1. Show that the Lyapunov Function, V(§,q, ), is positive definite with the proper choice of
c. Determine the appropriate bounds on ¢: any c that satisfies the bounds can be used in the

parameter update law of Equation (3.7).
2. Show that the Lyapunov Function is bounded if the velocity and position errors are bounded.

3. Compute the time-derivative of V (g, q, ¢) in order to show with the following steps that it is

never positive:

(@) Use the definitions for trajectory errors, equations of motion, and the control law in
Equations (3.2, 2.3, 3.4) to expand V(§, §, t).

(b) Define a specific representation of C(q,q) that will eliminate and simplify terms in
V(@ a).

(c) Determine the bounds on the remaining terms and show V' (§, q, t) is negative-semi-

definite. Doing so places requirements on the gain matrices, Kp and Ky ..

This proves that if the initial errors are bounded, V' (g, q, t) remains uniformly bounded, which

in turn implies that the trajectory errors remain uniformly bounded.

4. Given the above, use Barbalat’s theorem [27] and the boundedness of q to show that qand g

tend to zero as ¢ — 00, proving stability.

The stability and convergence proof for the adaptive controller requires a modification of the

Lyapunov Function to include a term that represents the “energy” in the parameter errors:

~ = ~ & 1-1 ~
V1(3,9,6,0) =V(qq,t) + 0 T'6 (3.10)
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Using the adaptive control law in Equation (3.5) and taking the time-derivative of the new Lyapunov
function, V1(q, §, 8, ¢), yields:

(§§0,0)=V(@a§1+8 r'6+8 Y7 (q,as40,a) (4 +a) (3.11)
Noting that 6= —0and 46 = 0, substitute the adaptive update law, Equation (3.7), to eliminate
the last two terms of Equation (3.11). This reduces the adaptive case to the nonadaptive case of

Equation (3.9). Making the same arguments shows that once again, q and q tend to zero as t — o,

proving stability for the adaptive algorithm.

3.3.2 Proof Details

This section presents the proof in some detail. The steps follow those derived in [47), but with the
notation utilized in this thesis. They also correct some minor errors. It is useful to examine first the
structure present in the equations of motion for a system of rigid bodies.
The Lagrangian formulation of the equations of motion starts with the kinetic and potential energies
for a system of rigid bodies:
T = 34"M(q)q (3.12)
U = -q"7+g(q)

where T is the kinetic energy, U is the total potential energy, of which g(q) is the gravitational potential

energy component. Using the Lagrangian, L = T — U, and applying Lagrange’s Equation:

IEYLANE
dt \ 8q dq
dM@a) 19(a"™M@) , %@
dt 2 oq dq
T
. . ... 1 {8(M(q) .
= —-7+M(q)g+M(q,4)q-; ((—(,,((:le) q+ G(q) (3.13)
This results in the equations of motion in the form of Equation (2.3), which can be rewritten as:
M(q)4 = 7 - C(q,9)q — G(q) (3.14)
where
1(8(M(@a))"
C(q,q)q = (M(q, q) - 2 (T) ) q (3.15)
clg &2 29 (3.16)

dq
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The stability proof uses the structure of the equations of motion demonstrated by Equations (3.13-3.16).

Step 1: Positive-Definiteness of V.

Define the following notation for bounds on matrices:

pp 2 ilafamin (M(q))

tp £ omin (Kp)
Be = Opmin (Ky)
™ 2 SUp Tz (M(q))
T £ Omas Kp)
Yo = Omaz (Ky)

where 0rmin and maz denote the minimum and maximum singular values, respectively. Roughly, these
singular values give the minimum and maximum “gain” of a matrix®,

With these definitions, a lower bound on the Lyapunov Function of Equation (3.8) is®:
~ 2 1 o2 1 )12 SIS
V(@,@,t) 2 5 (up + ) lGl° + Sem ”q“ —cym I ”qH (3.17)
Using “perfect squares”, the cross term can be written as:

“2englaNd] = e (el - e 4])° - evare IR - evaee? [

> —ovue |Gl - cvme™? [ (3.18)

“The inf notation represents infimum, which is the lower bound of the specified set, but this bound does not have to be a
member of the set. For example, inf 1/z = 0, but 0 does not belong to the set {1/z}. Similarly, sup represents the supremum,
or the upper bound of the specified set.

The maximum and minimum singular values of 2 matrix, K, give the maximum and minimum “gain” of K, respectively,
in a 2-norm sense. That is,

Ku
Omin = mf"‘ﬁ

®The notation, ||-||, denotes the 2-norm, or magnitude, of (-). It is defined by:

flu]l = (uTu)§ .
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for any € € R. Thus,

VaRY 3 Ll o)+ o - ) [
> e[l + oo |§ 3.19)
where,
o = pp+cpy — cymel (3.20)
oy = pp—cyme?

To ensure V(§, g, t) is positive definite, a; and a; must be greater than zero. Solving each inequality

in terms of €2 gives:

c
CYM < < Hp + Cliy
237 CYM
= vl < pm (up +cpy) (3.21)

Solving the quadratic in Equation (3.21) for ¢ yields:

1
4 2 2
c< EMEv [y 4 (14 2220y (3.22)
27 HM By

Thus, choosing c to satisfy Equation (3.22) guarantees that V(q, q, t) is a positive-definite function.

Step 2: Boundedness for V.

Following similar procedures as the above, an upper bound on the Lyapunov Function is:

V(@0 < 5 O+ er) I8P + 5mae [ + o 1G]] (3.23)

Using “perfect squares” again, the cross term can be written as:

20 1G]] = —evae (nlal - n7 [&]))° + evaen? 1EIP + emen? |
< ey @l +evmn™? ”ﬁ"z (3.24)
for any n € R. Thus,
V(@41 226 % (7 + v + cvur?) 17 + % (vae + cvmn™?) llﬁ”z

< Bl + B “51”2 (3.25)
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where,
B = Yp+enw+eormn? (3.26)
B2 = m+oewmn?
Noting that $; and 3, are guaranteed to be greater than zero, Equation (3.25) shows that V(§, g, t) is
uniformly bounded if the position and velocity errors, § and §, are uniformly bounded.
Assuming that ||q(¢)|| and “(‘i(t)” are uniformly bounded, the lower bound on V(§, g, t), leads

to the following:

V(EL 67 t) > a ||§(t)||2
(3.19)

.y
S (—) > sup (o) 6.27)
) t
where
V= sup V(d,q,t). (3.28)

Step 3: Negative-Semi-Definiteness of V.

Using a particular representation for the Coriolis and centrifugal matrix, C(q, ), and the identities
in Equations (3.31-3.34), this section proves that V(§, q, t) is never positive, showing that V(§, g, t)

never increases. Thus if the initial trajectory errors are bounded, they remain uniformly bounded.

Step 3a: Expanding V. Using the definition for trajectory error in Equation (3.2) to expand q, and
equations of motion in Equation (3.14) to substitute for M(q)q, and the control law in Equation (3.1)

to substitute for 7, the time-derivative of the Lyapunov Function in Equation (3.9) expands to:

V@&n =, & (M@d-7+Cladd+ 6@+ 1M )i +Krd)
+od M(@)§
+e§” (M(a, @) + Kv + M(@)de - 7 + C(q,8)4 + G(q))
5§ (-Claani- Kvi+Claaa+ M 9d)
+e§ M(a)§
+ei" (M(q, @)§ - C(a, 40)as — Kpd + C(q,9)d) (3.29)

-~ -~ 2T 2
= -q"KpG-q (Kv-cM(q))q
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LT Y Y 1. P\
+q (—C(q, 94)4s + C(q,9)4 + 7 M(q, Q)Q)
+cg" (M(q, 4)d - C(a,44)d4 + C(q,@)a) (3.30)
Choosing a “good” representation of C(q, q) will help further simplify this expression.
Step 3b: A Representation of C.  Begin by first defining a matrix, Mp, such that
Z. M
Mp(a,y) 2 3> BEDye7 (3.31)
i=1 Og;
where e; € R" s the ith unit vector. Following are some useful identities for Mp(q, y)’:
Hdentity I:
oM
(3—((1)}') =Mp(q,y) (332)
q
Identity 2:
M(q, @)y = Mp(a,¥)4 (3.33)
Identity 3:
Mp(q,y)z = Mp(q,2)y (3.34)
Now choose C(q, §) to be the following?:
. N .
C(q,4) = Mp(a,4) ~ 5Mb(a,4) (3.35)

Appendix A.2 shows that this is a valid choice by satisfying the condition in Equation (3.15). Using

this representation in the Lyapunov derivative of Equation (3.30) yields:

) (3.36)

e L _ _ =T ~ T _ L
V(q,q,t) oo Kpa—-q (Kv-cM(q))q
L -~ T . .
- (§+¢@) C(a,q0)44
T (1 2, vy 1 vy
+4 (EMD(q, 94+ Mp(q,4)q - ;Mb(q, Q)Q)
- . N N
+cqt (Mo(q, q)q+Mp(q,q)q -~ 5M1T>(q, Q)Q)
_ ATy~ T _ PR g . N
6233isy G4 Kpq-q (Kv-cM(q))q 54 Mp(a,44)a
~ N " ~ 1 Ay~
+eq” ((Mg(q, 44) - Mp(q,44)) 4 - ;MD(a, @4
7See Appendix A.1 for the proofs.

®This representation does not satisfy the skew-symmetric property required by the sliding-mode adaptive controller [37].

See Appendix A.2 for more details.
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Step 3c: Upper Bound for V.  This step shows that the upper bound for V(q, q, t) is never positive

for proper choices of Kp and Ky. First determine the upper bound on the last two terms of

Equation (3.36):

1.7 S l.T n BM . s
-3 MD(q,Qd)Q, ‘-q ( %q‘ie?) ql

(3?1) 2 =
1 2112
e (3.37)
where
2. |8M(q) )
ay
Y1 = su —_— (3.38)
qP (; 9g; |,
v & sup |Gl (3.39)
Similarly,

g" ((Mﬁ(q, 44) — Mp(q, f'ld)) q- %Mg(q’ &)ﬁ)'
< 2 il 4] + 2en il 4

5, e+ ene Ja + gen a4 (3.40

Note that the “perfect squares” expression similar to Equation (3.18) is used once again to eliminate the

cross term, 2¢7173 ||Q]| Ilﬁ“ Combining these results gives:

. . 12 1 o 112
V(g qt < A llal? = Az llal” + sen 14l |G :
(q 1 ) (3.36,337, 3.40) ! “q” 2 Hq“ + 2(:17X “q“ ”q“ (3 41)
where
M=o (up - 717362) (3.42)
1
A & (ﬂv —CYM — M3 (5 + C€-2)> (3.43)

Both A; and A; must be positive. This leads to the condition:

1 N3 2 _ Mp
'2' — — 1 < < —
By~ CYM — 372 M3
1 5, 1
= ‘2‘0’)’1 Y3 < Hpl|Hy—CYM— 57172

Hp (s — 37173)
ppYM + 37373

(3.44)
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Since ¢ > 0, the last inequality shows Ky must be chosen large enough to satisfy:

1
By > N (3.45)

to ensure that V(§, G, ) in Equation (3.41) has some negative definite terms.
Now assume that ||q|} and Hii” are bounded such that V defined by Equation (3.28) exists, choose
Ky large enough such that:

— 4
1 V?
Ay — 56’71 (a‘;) >0 (346)
Then
- 1
VA= i q 0 4
2= X2 = senllgl 25346 (3.47)

The upper bound on V (g, q, t) can now be written as:

vE@§n < -nlalk-X|q <o (3.48)

<
(3.413.47)

Thus given Ky large enough, V(ﬁ, 4, t) is never positive, so V(q, 4, t) is never increasing, such that
V = V(@(to), q(to), to)- (3.49)

This in turn implies, from Equation (3.19), that the trajectory errors, q and G, are uniformly bounded.
If the initial errors, G(to) and G(to), are small enough—so V is small enough—then the assumption

in Equation (3.46) can be satisfied easily.

Step 4: Stability

Application of Barbalat’s theorem at this point shows that if the trajectory errors remain bounded, then

they, in fact, also tend to zero. The theorem is stated as follows [6]:

Barbalat’s Theorem
If W(t) is a real function of the real variable t, defined and uniformly continuous for ¢t > 0, and if
the limit of the integral

t
lim / W (t"dt'
0

t—o0
exists and is a finite number, then

lim W(t) =0.

t—oo
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In other words, if the integral of a continuous function approaches a limit and does not grow without

bound, then W must approach zero, because it cannot continue to add to the integral.

To show stability of the controller, let
~ = [[x)1?
W) & M dl? + % |§] (3.50)

such that
V ,‘,t < —-W(t). 3.51
(a,q )(3‘ ) t) ( )

Integrating both sides of Equation (3.51) from 0 to t, yields upon rearranging,

[ we)a < v@0),40,0 - v@e,ao. 652

Since V (§(0), q(0), 0) is bounded, and V' (q, g, t) is nonincreasing and bounded below;, it follows that

t
lim / W(t)dt' < oo (3.53)
t—o0 Jo

Also, since {4 is chosen to be bounded, and since rigid-body dynamics dictate that ¢ is bounded for
bounded input forces and torques, W (t) is bounded, which implies that W (t) is uniformly continuous.

Applying Barbalat’s Theorem, therefore, gives
g, =0
sl = o
i 556
o] - o

This proves the asymptotic stability of the nonadaptive controller.

3.3.3 Adaptive Controller Stability

As the previous section showed, modifying the Lyapunov function to include the parameter-estimate
errors, and applying the adaptive update law of Equation (3.7), makes the above proof equally applicable.
Thus this section has also proved the asymptotic stability of the adaprive controller.

Finally, it should be noted that the above proof used rather loose bounds to derive requirements on
the gains, ¢, Kp, Ky. These requirements are sufficient, but not necessary, so one can use them for
initial design. In practice, the gains that achieve the best controller and adaptation performance may

not meet these criteria.



Chapter 4

Adaptive Control Extensions

The Bayard and Wen class of adaptive control algorithms is applicable in a relatively restricted realm—
single-arm joint control. This chapter describes the first steps in extending the adaptive control
algorithm to #ask-space control: 1) extension to utilize equations of motion developed using generalized
speeds to ease the design procedure and 2) extension to endpoint control. These extensions provide the
essential building blocks for developing the sask-space adaptive controller in Chapter 5.

Section 4.1 extends, in a limited fashion, the adaptive algorithm to handle the more generalized
modelling method using generalized speeds. This extension benefits controller implementation by
simplifying the terms that appear in the equations of motion. The approach is straightforward and,
except for a transformation from actuator torques to generalized forces, involves litde change from the
original adaptive controller.

Section 4.2 further extends the algorithm to handle endpoint control. This extension utilizes the
end-effector Jacobian matrix for transforming endpoint motions in Cartesian space to variations in
the generalized coordinates and generalized speeds. Once again, the changes to the original controller
structure are minor; this section furnishes a summary of the differences.

Section 4.2.3 offers an outline and the detailed stability proof for the new endpoint adaptive
controller. The Lyapunov function must be altered for endpoint control, and includes the Jacobian
matrix. The proof follows the same steps as the original proof by Wen, with an additional stability
requirement that the manipulators must stay away from kinematic singularity. Since endpoint control
per se also makes this requirement, this condition does not pose a serious limitation to the new endpoint

adaptive control algorithm.

33
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4.1 Extension to Generalized Speeds

Appropriate choices for generalized speeds can simplify the terms in the equations of motion for a
system. This aids implementation by reducing the number of calculations'. For instance, the two-link
arm example in Chapter 2 illustrated that for a planar robotic system with revolute joints, it is beneficial
to choose generalized speeds that correspond with the absolute rotation rates of the links, rather than
the joint rates. This section, therefore, extends the adaptive controller given by Equation (3.4) and
Equation (3.7) to this useful, albeit limited, case.

For generalized speeds chosen to correspond with absolute angular rates for the rotational degrees of

freedom, the generalized speeds and the joint rates are related by a constant matrix of zeros and ones:
a .

u=Wgq (4.1)

where W is the n X n constant matrix. The new joint-space adaptive control law can be expressed as:

F = M/(q)uu+ C'(q,usus+ G'(q) + Ky + WTKpg 4.2)
T = WTF 4.3)

or in terms of the parameter vector:

F = Y'(q,uqu4,19)0 + Kyii + W TKpg (4.4)
= Y'(q,uq,u4,02)0 + Kyt + W TKpg — Y'(q, ug, ug, 1g)0 (4.5)

The corresponding new parameter update law is:
6 =IY"(q,ug,ug, 1g) (ﬁ + cWTfi) (4.6)

where the / notation is used to distinguish the system equations from those derived nor using generalized
speeds. That is, M'(q), C'(q,u), G'(q), and Y’(q, ug, ug, @1z) are the matrices defined by the

generalized equations of motion,
F = M'(q)u + C'(q,u)u + G'(q) = Y'(q,u,u, 01)d. (4.7)

Figure 4.1 shows the block diagram of the new controller.  Application of the contro! law,

'The example in Chapter 2 demonstrates this.
ZSee the example given by Equation (2.6).
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g Feedback 1, | Manipulator > q
(K, i+W7K, §) System
A
Inverse
Dynall'\nics
Yo
_ Adaptive Law / )
A
6=I'Y"(l+W'q)
q

Figure 4.1: Block Diagram of the Adaptive Controller using Generalized Speeds

This controller allows the use of a system model that was developed with generalized speeds.
The controller structure is almost identical to the original controller, Figure 3.1, with the
exception of the transformation block, W, to bring generalized forces into actual joint torques.

Equation (4.4), results in a mathematical vector representing the desired generalized forces to apply to
the system. Implementation, therefore, requires the transformation of this vector back into actuator

torques. Other than this transformation, there is little change from the original adaptive controller.

4.1.1 Transforming Equations of Motion

Examining the relationship between the two forms of equations of motion defined by Equation (2.1)
and Equation (2.3) is useful for simplifying the stability proof.
Differentiating the generalized speeds in Equation (4.1) with respect to time yields:

u=Wq (4.8)
Substituting Equation (4.1) and Equation (4.8) into the equations of motion using qs results in:

T = M(q)q+C(q,9)q+ G(q)
= M(q)W'lix + C(q,W"lu)W"lu + G(q) (4.9)
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Premultiplying both sides of Equation (4.9) by W=7 gives:
W Tr =W TM(qQW'u+ W-TC(q, W)W lu+ W TG(q) (4.10)

Matching terms of the generalized equations of motion in Equation (2.1) with those in Equation (4.10)
yields:

F = WT7Tr
M’ = W TM(qW-!
(q) (q) (4.11)
C'(qu) = WTC(qWlu)W™!
G'(q) = WTG(q)
It also follows from Equation (4.10) that,
Y'(q,u,u,ix)g = W—TY(CLW_IU’W_IU,W-I‘.I)O (4.12)

The equations in (4.11) and (4.12) represent the transformation between the two forms of equations

of motion and the transformation between generalized forces to actuator torques.

4.1.2 Stability Proof

The stability proof for this case is rather straightforward. Substituting the transformations in Equa-
tion (4.11) into the control and adaptive laws of Equation (4.4) and Equation (4.6), results in exactly the
original Bayard and Wen control and adaptation laws®. The same Lyapunov Function, Equation (3.10),
therefore, can be used to prove stability.

For completeness sake, the Lyapunov Function and its derivative can be written in the / notation

and in terms of generalized speeds as:
V(g i,t) = %ﬁTM’(q)ﬁ + 337 (Kp + Ky) G+ " WM/ ()i + %6%—16 (4.13)
and
o <Tapreng . LTy ~ , T ~
V(g,u,t) = @ M(q)u+ ;0 M(quji+q Kp+cKv)q
+cuTM'(q)ii + cgT WTM/(q, u)i + cgT WTM/(q)ii
+8° T8+ 8" Y'T(q, ug, ug, 8g) (@ + W (4.14)

Using the transformation equations also will reduce these to the original Lyapunov function and its

derivative.
3See Appendix A.3 for the proof.
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4.2 Extension to Endpoint Control

While endpoint control can benefit a fixed-base industrial robot performing precise, dextrous manip-
ulation, it is crucial for a mobile robot that needs to perform acquisition before any manipulation.
With no fixed base from which to reference the location of the parts it is to acquire, the mobile robot
controller must use feedback directly on the manipulator endpoint positions relative to the part. The
space robot capturing a free-flying satellite, for example, must use endpoint control to track the grasp
points on the satellite before capture.

Hence, this section further extends the adaptive control algorithm to endpoint control. The desired
trajectories a2 manipulator must follow are given in terms of endpoint Cartesian coordinates. The
adaptive law also updates the parameters based on the endpoint tracking errors. Although at this point
this extension is still applicable only to a single-manipulator robo, the results can be quite useful for

later extension to the full cooperating-manipulator space robot.

4.2.1 Endpoint Jacobian

The extension from joint control to endpoint control utilizes the Jacobian matrix. Figure 4.2 illustrates
the relationship between the endpoint and joint positions.  In general, the Jacobian matrix arises
when differentiating mathematical vector fields?. It is composed of the partial derivatives of the vector
function. In robotics, the term, Jacobian, has taken on a more specific meaning, namely, the relationship
between joint rates and the manipulator end-effector velocity (a physical vector) and orientation rates.

Simple kinematic analysis gives the endpoint position and orientation as functions of the joint
angles, represented by:

x = k(q) (4.15)

where x € R™ contains the endpoint position and orientation, and k : R — IR™ are the kinematic
equations. When m = n, the robot is said to be nonredundant, and when m < n, the robot is
redundant. ,

Taking the time-derivative of both sides of Equation (4.15) gives:

% = al;((?)q + algt(’) (4.16)

“Not to be confused with the physical position (x) and velocity (x) vectors which are of course also the centerpiece of
Figure 4.2.
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Figure 4.2: Cartesian Endpoint Position and Velocity

q1 and q; represent the shoulder and elbow joint angles. x is the position vector of the
manipulator endpoint and x represents the endpoint velocity vector.

Defining the Jacobian to be:
9k(q)
J(q)= —* 417
(@ = T (4.17)
and a time-dependent term to be:
ok
Ji(q) = ——a(tq) (4.18)

yields the endpoint Jacobian relationship for robotics:

x=J(q)q+Ji(q) (4.19)

When there are no prescribed® motions in the system, J;(q) is zero, which yields the more common
relationship:

x=J(q)q (4.20)

3A prescribed motion is a motion that the system is forced to undergo in response to unmodelled external forcing functions.
In robotic systems, where all forces are modelled, there are no prescribed motions.
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The inverse Jacobian relationships are:

¢ = I'@x-I" (@ (4.21)
37q) (% - 3(a, 037" (@x - Ju(a)) (4.22)

il

q

To make use of generalized speeds, additionally define a transformed Jacobian, J'(q), as:

J(q) £I(QW™! (4.23)
such that the following are true:
u = Wq (4.24)
x = J(Qu+Ji(q) (4.25)
u = I @x- I (@) (4.26)
@ = 37 (k- (@ wI T (@x - Ji(a) 427)

Example

The two-link arm example illustrates that using generalized speeds can also simplify the terms in the

Jacobian. The physical position vector for the endpoint can be written as (See Figure 4.2):

x = (I cos(q1) + Ly cos(q1 + q2) + zo) a1 + (i sin(q1) + L2 sin(q1 + q2)) a2 (4.28)

where a; and a; are mutually orthogonal unit vectors, and z is a constant offset of the shoulder from
the origin of the coordinate system. Taking the partial derivative with respect to q gives the Jacobian:

~lysin(q1) = Isin(q1 + q2) —l2sin(q1 + q2)

J(q) (4.29)

@IN 4 1y cos(qr) + lacos(qy + g2)  Lrcos(qr + g2)

where it has been expressed in the coordinate system aligned with a; and aj. The sransformed Jacobian

for use with generalized speeds, utilizing W' from Equation (2.6), is:

J,(q) - —ll sin(ql) -—lz sin(q1 + q2) (430)

42326 | | cos(q1)  l2cos(qi + q2)

Because there are no prescribed motions, J;(q) and J3(q) are zero.
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4.2.2 Endpoint Adaptive Control

Using the transformed Jacobian matrix defined above, the endpoint adaptive control law can be written

in terms of generalized speeds as:

F = M(@u+C(quu+ @ +I7(q) (Kvo%+KpX) 43D
r = WIF (4.32)

or in terms of the parameter vector:

F 5 Y'(q, ug, ug, ug)8 + 37 (q) (KVIS'E + szi) (4.33)

= Y'(q,u4,u4,80)0 + 37 (KX + KpoX) - Y'(q ug ug,u)d  (434)
The corresponding adaptive update law is:
8 = Ir'Y'"(q, ug, ug, 1)3"'(q) (%+ cx) (4.35)
In addition, the desired generalized speed and its derivative are given by:

ug I Ha@)xq — 37 (q)Ji(q) (4.36)

(436)

W g 37 (k- W (@
- ¥(q, 0" (@Ya) - (a) 437

The key differences between the new endpoint adaptive controller and the joint controller can be

described as:

o Endpoint-trajectory tracking. The controller tracks endpoint trajectories, because it performs
feedback directly on the endpoint tracking error. The adaptive parameter update is also based on

the endpoint tracking error.

® Jacobian calculations. The Jacobian calculation blocks are the only real structural changes in
the controller. They are needed to convert the desired endpoint trajectories into equivalent
desired joint-space trajectories for use by the inverse-dynamics feedforward block. The Jacobian
also translates the feedback forces, expressed in Cartesian space, into the mathematical space
represented by the generalized forces. Finally, the adaptive update block also uses the Jacobian to

map the tracking errors to the joint space, in which the adaptive model is derived.
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Figure 4.3: Block Diagram of the Endpoint Adaptive Controller

The endpoint adaptive control tracks endpoint trajectories by performing feedback directly on
the endpoint errors, X. Note that the adaptive parameter update is also based on the endpoint
tracking error. This controller structure is once again very similar to the original controller,
Figure 3.1. The only additions are the Jacobian blocks that transform the endpoint quantities
into equivalent joint-level quantities. The transformation block, W, is still required to bring

generalized forces into actual joint torques.

o Torque transformation. Since the control law is given in terms of generalized speeds, the transfor-

mation block, W, is still required to transform the commanded force into actuator torques.

4.2.3 Stability Proof

The stability proof involves choosing a new Lyapunov Function to represent the “energy” in terms of

the endpoint tracking errors and then showing that it goes to zero, implying that the tracking errors also

go to zero. In doing so, the proof places an additional requirement on the controller: the manipulator

must remain away from geometric singularity, which equates to the matrix inverse of the Jacobian being

bounded. This is a very natural requirement, since the controller becomes ill-behaved near kinematic

singularities; it is also a requirement whenever one implements a Cartesian-space controller. In practice,

kinematic singularity is easy to detect®. If it cannot be avoided, the controller can change control modes

STypically, kinematic singularities occur when two or more degrees of freedom of the manipulator *line up”, where the
manipulacor loses degrees of freedom. For the two-link manipulator, kinematic singularity occurs with the arm straight out
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to bring the manipulator into a more favorable configuration.
This proof starts with the nonadaptive controller by choosing the Lyapunov Function and calculating

its derivative. It then follows steps similar to that of the original proof in Chapter 3:

1. Show that the Lyapunov Function, V (X, X, t), is positive definite with the proper choice of c.

Determine the appropriate bounds on c.
2. Show that the Lyapunov Function is bounded if the velocity and position errors are bounded.
3. Show with the following steps that the time-derivative of V' (X, X, t) is never positive:

(a) Use the definitions for trajectory errots, equations of motion, and the control law in
Equations (3.2, 2.1, 4.33) to expand V (%, X, t).
(b) Use the Jacobian relationships, Equation (4.25) and Equation (4.26), to simplify terms in
V(X,X,t).
This reduces the form of V (X, X, t) to the same form as in the original proof. Thus, the rest of
the stability proof follows the original, with minor changes to the necessary bounds.
This proves that X and X tend to zero as t — 0o, showing stability.
4. The Lyapunov Function is then modified to include adaptation. The application of the adaptive

update law, Equation (4.35), reduces the stability proof for the adaptive algorithm once again to

the nonadaptive case, where stability has been shown already.
Endpoint Lyapunov Function—Nonadaptive
The new Lyapunov Function for the system operating the nonadaptive endpoint controller is:

~ 2 1.7 /_,— - 2, 1. ~
V(X,Xx,t) = 73X (J’ T(q)M' (q)T' ‘(q)) X+ ExT Kpz + cKyz) X
+&xT (¥ T (@M(@)3 (@) % (4.38)
The first two terms represent the “energy” in the endpoint velocity and position errors. They are squared

terms, so they are always positive. The third term is a cross product term between the velocity and

position errors—this term is not guaranteed to be positive, so the positive-definiteness of Equation (4.38)

such that the links lie along the same line. In this situation, the endpoint of the arm can trace out only an arc—defined by the
shoulder angle and the total length of the arm—which is only one degree of freedom.
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must be shown. The scalar, ¢ > 0, is a weighting on the cross term—c is the same weighting that
appears in the adaptive update law in Equation (3.7).
Using the inverse Jacobian relationship, Equation (4.26), and replacing X with #, the Lyapunov

Function also can be expressed as’:
~ 2 1. S ~  ~Ti— ~
V(X,X, t)(ﬁaiuTM'(q)u + ExT Kpz + Kya) % + XTI T (qM'(q)i (4.39)

Noting that M’(q), K p, and Ky are symmetric, the time-derivative of the Lyapunov Function can be
written as:
V%) = aTM(Qi+ %GTM'(q, w)ii + % (Kps + cKya) X
+cx 37T (@M (Q) + XTI T(q, u)M'(q)

+exT3 T (@M (q, w)ii + &TT T (q)M/(q)i (4.40)

Positive-Definiteness of V'

Using the first expression for V (X, X,t) in Equation (4.38) and following the same progression as in

Step 1 of the proof in Section 3.3.2 show that:

s ~ 2|12
VX, X,t) > o|X| + e ”x“ (4.41)
(4.38,3.19)
where,
— _ 2
oy = ppt+Cpy c:‘zﬁfe (442)

- BM _ -2
az—ﬁ%‘cifﬁ;‘-e

with the following definition of the limits:

BM 2 igf Tmin (M'(q))
py & inf omin (3'(9))
"Note that:
I o= t-i
= (J'(Qus+Ji(@) - (' (@u+J(a)
= J(Qua-w
such that,

T=)(qu
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Hp £ Tmin (Kp)
Hy 2 Tmin (Kv)
w £ SUp Tmaz (M'(q))
v = SUp Tmaz (J'(q))
q¢Ss
Yo 2 Omaz (Kp)
Yv £ Omaz (Kv)

S represents a set of regions around singularities. That is, the limits for J’(q) are defined for manipulator
configurations that exclude finite regions around singularities. For V' (X, X, t) to be positive definite,

both a; and a; must be positive, which puts a condition on ¢:

1
T VI U PURE. %7 T/ A (4.43)
274475 Y

The additional terms, 7 and 7, are the main changes these bounds. It is clear from Equation (4.43)

that for ¢ to have a non-trivial solution, the manipulator must remain away from singularity such that

py # 0.

Boundedness for V

Following the same procedure as Step 2 of the proof in Section 3.3.2 shows that:

~ L -~ <12
V%Y < BIRIE+ 6 || (4.44)
(4.38,3.25)
where,
B = wtewt+ My
’ & (4.45)

B2 = ‘;‘ﬁ‘+61‘3‘7)_2
J iy

It is again clear that if the robot remains away from singularity such that p; # 0, then V(%, X, t)

remains bounded.

Negative-Semi-Definiteness of 14

Using the definition for trajectory error, Equation (3.2), to substitute for U, and using the equations of

motion, Equation (2.1), to substitute for M/(q)u expands the Lyapunov derivative in Equation (4.40)
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to:

by~ & _ T ! O ’ ! l YU =
VExD o=, W (M@i- P+ Cguu+ Gl@)+ M (qwi

+3"T (@)K p:X) + cii M'(@)ii + &3~ T (q, u)M' (@)
+ex"3" (M'(q, 0)ii + M'(@)i - F + C'(q, uu + G'(@)

+ J’TKV,SE) (4.46)

where the Jacobian relationship, Equation (4.25), is used for the K p, term. Substituting the control
law in Equation (4.31)—assuming an ideal model—for F yields:

V(% %1 i (~C(g,ua)ua = I (@Kvo% + C'la,upu + 3M(q,w)a)

431)
+ci?M/(q)i + xT3""T(q,u)M'(q)u
+cx73 T (q) (M'(q, 0)ii - C'(q, u4)us - I Kp, %+ C'(q, u)u)
_ _ =T - _ T _.pT ’ =1 <
wrig X KpX-X (Kve — ' T(@M()3 (@) X
+cxT 3" T(q,u)M'(q)u
N 1. -
+a’ (-C'(q, ug)ug + C'(q,u)u + EM’(q, u)u)
+&X73' 7 (q) (~C'(a, ua)uq + C'(q, w)u + M'(q, w)i)
— _=T s _ T _ .y T / =1 <
Sy~ KpX =% (Kve - oI (@M@ (@) X
+cxTI T (q,u)M' (@)~ (@)%
2T _,- . oN e Ve 1. LA
+x I T (w7 (—C(q, Q444 + C(q,9)q + 5 M(q, q)q)

+ex7 3T (QWT (-C(q,40)ae + C(q,0)d + M(q,4)d)  (447)

The last two terms of Equation (4.47) are almost identical to those in Equation (3.36), except for the
T (Q)WT premultiplier. Assuming once again that the manipulator stays away from singularity and
noting that W is a constant matrix of zeroes and ones, the development in the original proof can be

used once again to state:

V&% < =M= % + -lz—c% EE (4.48)

where

4 £ sup|xg| (4.49)
t
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A /-1
Yj-1 = SupOmaz (47 (q (4.50)
g qc!g ( ( ))
2 _n . )e?
A2 e (up r (va+7j-1)€ ) (4.51)
2 ey = L (1 —z))
A = (ﬂv S e (74 +vj-1) ( 5+ (4.52)

The dependence on 7 ;_, comes from the extra term in the Lyapunov derivative involving J'~T(q, u). It
can be argued again that if the manipulator does not go through singularity, then J’~'(q) is continuous,
and thus its derivative is bounded. Requiring both As to be positive gives the requirement:

Im

’ - 4.
Ve 34834502 py (va +75-1) (4.53)

Choosing Ky large enough such that:

-1
1 Y1 V?
A—zc—|—] >0 4.54
2 ZC#J (01) (4:54)
gives:
T 2, — Lol iz
A=A zqu [Ix|} >0 (4.55)

which yields the upper bound on the Lyapunov derivative:

e~ A ~112 - o2
VEEY, < =R -3 | <0 (4.56)

Thus, the Lyapunov Function, V (X, X, t) is never increasing, showing that if the initial errors are
bounded, they remain bounded. Again applying Barbalat’s Theorem shows that X and X tend to zero
as t — oo, proving stability.

Endpoint Lyapunov Function—Adaptive Case

The Lyapunov Function for the system utilizing the adaptive endpoint controller follows the example

of the original proof by adding a term representing the energy in the parameter estimation errors:
~ X ~ & =T _1=
Vi(x,x,t) = V(X,X,t) + 50 r-'e (4.57)

Using the adaptive control law in the form of Equation (4.34) to substitute for F after expansion (see

Equation (4.46)) and taking the time derivative of Equation (4.57) gives:

V(% % 1) = V(EX,6)+8 T7'0+8" Y (quzus8)7 7 (a) (X + &) (458)
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Noting again that 6 = —8and substituting the adaptive update law, Equation (4.35), eliminate the
last two terms, reducing Vi (X, X, 1) to V (X, X, t). Employing the proof developed for the nonadaptive

case proves the stability of the endpoint adaptive controller.



Chapter 5

The Task-Space Concept

The extension of the adaptive controller to endpoint control in Chapter 4 provides the essential
components for further extensions to sask space. This chapter presents the sask-space concept in terms
of a generalized Jacobian. It also shows that, utilizing the generalized Jacobian approach, the new
endpoint adaptive control algorithm can be extended to zask space with almost no modifications.

This chapter takes full advantage of the power in the generalized forces and generalized speeds
concepts found in Kane's dynamical equations [15] to derive the expression for the generalized Jacobian.
Section 5.1 presents the task-space adaptive control law for single-manipulator robots, showing that
endpoint control is just a special case of the zask-space adaptive control. Section 5.2 develops and
formalizes the relationships between two different sets of generalized speeds chosen for a system. It also
examines the relationships between the two sets of generalized active forces and equations of motion
associated with the choices of generalized speeds. These generalized relationships show that the time
derivative of the rask-space control vector is equivalent to a set of generalized speeds, which leads to an
intuitive validation of the zask-space adaptive controller.

The chapter concludes with several sections providing specific examples of sask-space control

objectives:

o Noninertial reference-frame control. This control mode is important for mobile robots that must
rely on local sensing. If the robot base rotates or accelerates during manipulation, the local
sensors will be providing sensing in a noninertial frame; the controller must of course take this

into consideration.

48
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Fuel savings is another benefit of noninertial reference frame control for space robots. The

controller decouples the feedback of the noninertial frame control of the manipulators from the

feedback of the free-flying base control. Thus manipulator tracking errors during regulation do

not cause the thrusters to fire. The thrusters will activate only in response to base regulation
1

errors’. The implication is that the manipulator control gains may be increased to improve

manipulator tracking without incurring unnecessary thruster firings during regulation.

o Single-manipulator space robot control. This example describes how rask-space control may be
utilized for control of a space robot. This example uses a single-manipulator space robot, because
the zask-space adaptive controller for multiple-manipulators has not been presented yet?. The

characteristics of space robot control remain the same regardless of the number of manipulators.

o Control subject to motion constraints. Motion constraints arise when a manipulator comes into
contact with its environment. Understanding the issues in control of constrained motion is

critical to understanding multiple-manipulator control.

o System-momentum control. System-momentum control is another control mode for providing
fuel saving control for space robots. Maintaining constant system momentum during local
manipulation ensures that the manipulators will compensate appropriately for the reactions in
the base to prevent thrusters firing, conserving precious fuel. System-momentum control has been
presented by Umetani and Yoshida [44] and Koningstein [19], and this example demonstrates
how task-space control may be used to achieve the same control mode. The added complexity
of deriving symbolically the momentum equations, however, may make this control mode too
costly to implement, in a given application, compared to the noninertial-reference-frame control

for minimizing fuel usagc3 .

o Redundancy Management. The task-space controller can be employed to control a limited class of
redundant manipulator systems. The difficulty typically arises because the endpoint Jacobian is
not square: There are more degrees of freedom in the robot than there are in controlled states of

the end effector. Since a nonsquare Jacobian cannot be directly inverted, much of the redundancy

"There is full coupling in the feedforward portion of the controller,

?Multiple-manipulator control will be presented in Chapter 6.

3The complexity should be examined for each given application to determine the feasibility of implementing system-
momentum control.
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research has concentrated on the choice of appropriate, but computationally intensive, generalized

inverses for the Jacobian.

Task-space control offers another solution by including auxiliary control objectives in the zask-
space control vector to generate a square generalized Jacobian. For example, the auxiliary control
objective may be the height of an elbow in a 7-degree-of-freedom manipulator; the elbow height
may be controlled directly to avoid obstacles while simultaneously controlling the end-effector
position and orientation. Thus if suitable and valuable auxiliary control objectives can be added,

task-space control offers a good alternative to the standard redundancy controllers.

Armed with the capabilities developed in this chapter, Chapter 6 will provide the final extension to

multiple-manipulator sask-space robot control.

5.1 Task-space Adaptive Controller—Single-Arm Case

task 4

For a robotic system, choose y**** as any set of ask-space quantities to be controlled, physical quantities

that may be expressed as n linearly independent functions of the generalized coordinates, q:
y*** = h(q) (5.1)
where h : R™ — R™. Its time derivative can be expressed as:
yet = W(q)q + Wi(a) (5-2)

where W/(q) is a n X n matrix and W}(q) is a n vector of functions of q and time t°. Also choose

for the system a set of generalized speeds, u, related to the generalized coordinates by:

u = W(q)q + Wi(q) (5.3)

“As will be shown, these physical quantities can include not only linear translations and angular rotations, but any physical
quantities that can be expressed as functions of the generalized coordinates. Keeping the arms in a high-leverage configuration
and away from singularity, and minimizing thruster use are two cogent examples.

’In particular,

_ oh(g)

and

wig = 29
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where W(q) is an X n matrix and W,(q) is a n vector of functions of q and time . Let the equations

of motion for the robotic system, using this set of generalized speeds, be expressed as:
F=M/(q)u+C'(qu)u+G'(q) +f; = Y'(q,u,u,u)0 +f; (5.4)

where f; is added to represent the effects of prescribed motions.

Now define the generalized Jacobian® as:
J(q) € W(@W™(q) (5.5)
and a time-dependent vector, J¢(q), as:
Tu(@) 2 (Wi(a) - W(QW ™ (q)Wi(a)) (5.6)

such that,
vk = J(qu + Ji(a) (5.7)

Then the zask-space adaptive control law is:

— , ~ P ~task ~
F = M(qu+C(quaus+G'(q)+f+IT"(q) (Kvyym + pry‘“"k) (5.8)
T = W(q)TF (59)
where ylook = ylosk _ y'*e* and '}L'mak = yioek — yt%%%. The control law can be expressed in terms

of the parameter vector as:

F(2=9)Y'(q, ug, ug, 13)8 + £ + I7(q) (Kvy')"'t“k + prgr‘“k) (5.10)
The corresponding adaptive update law is:
6= 'Y (g 4,040,507 7 @) (5 + ) (5.11)

In addition, the desired generalized speed and its derivative are given by:

u4 (;) J—l(q)y:iaak - J_I(Q)Jt(q) (5.12)
W g I (58 - T wT @y
- T(qu) T Q)T(a) - T z(q)) (5.13)

The generalized Jacobian presented in this thesis is 2 more formal definition than that presented by Umetani and Yoshida
(44). The generalized Jacobian is generalized, because it relates two sets of generalized speeds, and its terms obviously depend
on the choice of the sets of generalized speeds.
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The only requirement is that the configuration of the system must be monitored to ensure that J(q)

stays away from singularity’.

gt Feedback

Manipulator | q, y“’fym

ymk _{}_ )
1% (K, §4HK , §°) System
A
. Inverse
» g~ u,,4 Dynamics 1
Y8
Adaptive Law / 9

O=IY'Y (747

q

Figure 5.1: Block Diagram of the Zask-Space Adaptive Controller—Single-Manipulator Case
The task-space adaptive control tracks task-space trajectories by performing feedback directly

on the task-space errors, **°*. Note that the adaptive parameter update is also based on the
task-space tracking error. This controller structure is once again very similar to the original
controller, Figure 3.1, and almost identical to the endpoint adaptive controller Figure 4.3.
The only changes are the use of the generalized Jacobian blocks that transform the task-space
quantities into equivalent generalized speeds. The transformation block, W(q), is still required

to bring generalized forces into actual joint torques.

Figure 5.1 shows the structure of the task-space adaptive controller. Note the similarity with the
endpoint adaptive controller of Figure 4.3.
In fact, comparing the sask-space adaptive controller (Equations 5.7-5.13) with the endpoint

task 1o be the end-effector position

adaptive controller (Equations 4.31-4.37) shows that choosing y
and orientation®, the two controllers are identical.

The task-space adaptive controller represents a generic controller structure, capable of handling

"For the general zask-space vector—one that does not correspond only to end-effector position and orientation—the
singularity points of J(q) can be caused by cither kinemanic singularity or algorithmic singulariry. Kinematic singularity
occurs when the physical configuration of the system is such that there is a loss of degree of freedom, e.g., when two links are
aligned. Algorithmic singularities are all other configurations, q, such that rank (.7 (q)) < n.

®Note thar although the planar examples in this thesis do not show the end-effector orientation, a general manipulator
end-effector configuration is described by its position and orientation.
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any number of control modes just by switching the sask-space control mathematical vector. Switching
control modes essentially involves only the switching of the generalized Jacobian blocks and the trajectory
generators to produce trajectories appropriate for the new ask-space control quantities. The feedback
gains also should be changed appropriately for the controlled quantities; but none of the inverse
dynamics controller, the adaptive update blocks, or the system parameters need be modified. Because
the system model does not change during control mode switches, there will be no transient response in

the system.

5.1.1 Proof

The stability proof for the endpoint adaptive controller in Chapter 4 # the stability proof for the task-
space adaptive controller. At each step in the proof; simply replace x with ytes¥ and J'(q) with J(q).
All that remain are the justification for the definition of the generalized Jacobian and its relationship to

task-space quantities.

5.2 Generalized Relationships

This section establishes the relationships between two sets of generalized speeds, partial velocities, gen-
eralized active forces, and equations of motion. Utilizing these generalized relationships, Section 5.2.5
provides additional validation of the fask-space adaptive controller—this time on an intuitive level—
showing the similarity between the sask-space adaptive controller and the original Bayard and Wen

controller.

5.2.1 Generalized Speeds

Define two sets of generalized speeds as:
u=W(q)q+ W(q) (5.14)

and

u' = W'(q)q+ Wi(q) (5.15)



54 Chapter 5. The Task-Space Concept

Solving for q in Equation (5.14) and substituting into Equation (5.15) gives®:
v = W(QW (qu+ (Wi(q) - W(@QW (@W.(q)) (5.16)

where the terms in the parenthesis are independent of both sets of generalized speeds, u and u'.
Making the generalized Jacobian definitions,

J (@) £ W(QW(q) (5.17)
and a time-dependent vector, J4(q), as:

Ti(a) £ (Wila) - W(@W (@ W.(q)) (5.18)

Equation (5.16) becomes:
v =J(qu+ T(q) (5.19)

Comparing u’ in Equation (5.15) with the time-derivative of the task-space vector in Equation (5.2),

shows that ytaok

is simply another choice of generalized speeds corresponding to u’. Thus, Equations (5.16~
5.19) prove the generalized Jacobian relationships of Equations (5.17-5.7).
Using the generalized Jacobian notation, the relationships between the two sets of generalized speeds

and their derivatives can be given by the following equations:

v = J(qu+ J:(q)
u = I - Ti(@) (5.20)
i = J7(Q) (¥ - T(awI @y - T(q,w)T (@) Tu(a) - Te(qu)

The equations in 5.20 justify the calculations in Equation (5.12) and Equation (5.13) to derive desired

generalized speeds and their time-derivatives from desired #ask-space quantities.

5.2.2 Partial Velocities

Partial angular velocities and partial velocities play large roles in the development of Kane’s dynamical
equations for generating the equations of motion of a system. This section examines the relationship
between two sets of partial angular velocities and partial velocities that result from any two choices of

generalized speeds.

’In a holonomic system, the number of generalized speeds equal the number of generalized coordinates, such that W(q)
and W’(q) are both square and invertible.
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The angular velocity in reference frame N of a rigid body B and the velocity in IV of a point P on
B can be expressed uniquely as [15]:

n
w= Zwru, + w (5.21)
r=1
and
n
v= E Vety + Vi (5.22)
r=1

where W, vy, wy, and v; are functions'® of q and time ¢, and wu, is the rth generalized speed. The
vector, wy, is the rth partial angular velocity of B in N, and v, is the rth partial velocity” of Pin N.
Again, when there is no prescribed motion, w; and v are zero.

Rewriting Equation (5.21) and Equation (5.22) in matrix notation gives:
w=[wu+w: (5.23)

and

v=[vi]u+v; (5.24)

where the 7th column of the matrix [w,] contains the rth partial angular velocity, and the rth column
of the matrix [v,] contains the rth partial velocity!2.

Using the two sets of definitions for generalized speeds in Equation (5.14) and Equation (5.15), the
expressions for w and v can be expressed as:

w3, [wrylu+w; = [w]u' + ) (5.25)

and

— — / ! !
A [vilu+ vy = [vi]u' +v; (5.26)

19Because of the dynamics of physical systems, these partial-velocity functions are independent of the generalized speeds.
"1 Note that the partial angular velocities are the partial derivatives of w with respect to the generalized speeds, and the
partial velocities are the partial derivatives of v with respect to the generalized speeds. That is:

-

vr =

a
wr=§

Uy Buy

In practice, W, and v, can be derived by inspection, since they are simply the coefficients of . in the expression for w and v,

respectively.
2The brackets notation represents the matrix comprised of all partial velocity vectors, respectively:

[wr]=[w1 w,,] [vr]=[v| v,.]
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where [w!] and [v!] are the partial angular velocities and partial velocity matrices, respectively, associ-
ated with u’.

Utilizing the relationship between the generalized speeds, substitute Equation (5.16) for u’ into
Equation (5.25) and Equation (5.26) to give:

wlutw: = [W]W(@QW ' (qu
+ (W] (Wil@) - W'(@W ™ (@Wi(a)) +wi (5.27)

and

vlutve = [vi] Wi(QW " (qu
+ V] (Wil@) - W(@W ™ (@W.(@) v} (5.28)

Equating the coefficients of u results in the relationship between the two sets of partial velocities:

wl = WW@W (@)= [W]T@ (5.29)

[vi] W (q)W™!(q) ENVARACY (5.30)

[vr]
These relationships will be used to relate the sets of generalized active forces associated with the two sets
of generalized speeds.
5.2.3 Generalized Active Forces
This section develops the relationship between any two sets of generalized active forces. The generalized

active force acting on a rigid body B is defined in Kane [15] according to the following:

If B is a rigid body belonging to a holonomic system S possessing n degrees of freedom in a
reference frame NV, and a set of contact and/or distance forces acting on B is equivalent to a couple of
torque T p together with a force R whose line of action passes through a point Q of B, then (F})p,

the contribution of this set of forces to the generalized active force F,. for S in N is given by
Fp=wl -Tp+v® - Rg (r=1,..,n) (5.31)

where w?P and v2 are, respectively, the rth partial angular velocity of B in N and the rth partial
velocity of Q in N.
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Note that the dot-products are equivalent to the following:

T
w,l? 'TB = w? TB (5 32)
v?.Rqo = VvPTRg
Stacking the contribution of B to the n generalized active forces into a column vector re-expresses
Equation (5.31) in matrix notation as'?:
wlB Tg V? ‘Ro
F, =
[( r)B] 5.31) + .
_wE'TB_ _vg-Rq_
wBTTp vOTR,
_ . + .
(5.32) T .
] wB ' Tp 1 1 v@ Rg ]
= [wB] T+ [v¥] Re (5.33)
(525526 L T T

where the [(F}) ) is the set of generalized active forces contributed by forces acting on body B.

Summing over all bodies in system S yields the generalized active force vector for the system:

B 51T Q17
Fy & [or] To+ ] Ra (5.54)
bodies
Using the alternate set of gencralized speeds, u', the generalized forces given by Equation (5.34)

becomes:
T T
F’ = !B T Q0 .
(5.34,5.25, 5.26) gu: [wf ] B+ [Vr ] Rq (5.35)
bodies
where the primed notation indicates the generalized active forces and partial velocities associated with

u'.
To derive the relationship between F and F, substitute the partial velocity relationships of Equa-
tion (5.29) and Equation (5.30) into Equation (5.34):
T T
Y ([« W@W @) Ts+([v?]W@W'(@) Re
all

bodies

(5.34,5.29, 5.30)

13The matrix notation is defined as:

(F)
a2 | ¢
(Fn)g
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=Y (W@w@) [#2] Ts+ (Waw@) [9] Re

all
bodies
= (W’(q)W“(q))T > [w? ]T Tp+ [VLQ]T Ro (5.36)
all
bodies

Using Equation (5.35) as the expression for generalized forces results in the relationship:

' - T_,
F 5539 (W (@QW l(q)) F (5.37)

Hence, taking the definition of generalized Jacobian in Equation (5.17) gives:

_ Ty
F(s.ay’,s.mj(q) F (5.38)

Equation (5.38) is a general relationship between two sets of generalized active forces for any two sets

of generalized speeds.

Utilizing the following definitions for generalized speeds of a single-manipulator robot:
g g g % g p
u=4q
u = xtip
the corresponding generalized active forces are:
F=r1
F! = Ftip

Substituting these into Equation (5.38) and utilizing the endpoint Jacobian gives:
T =JT(q)F¥r (5.39)

This is the familiar relationship relating actuator torques to endpoint forces. The development in this
section provides a more formalized proof of this relationship than the usual proof involving statics and

virtual work!4.

5.2.4 Equations of Motion

The equations of motions for a system of rigid bodies, such as a rigid-link robot, in terms of a set of
generalized speeds, u, as:
F = M(q)u+ C(q,u)u+ G(q) + £ (5.40)
MSee Appendix A.4 for the virtual work proof.
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where the vector, f;, has been added to include possible forcing functions that keep the system in some
prescribed motion. Using another set of generalized speeds, ', the equations of motion are equivalently
expressed as:

F = M'(q)d’ + C'(q,u')u’ + G(q) + f; (5.41)

This section demonstrates the relationship between the terms in the two sets of equations of motion. It

also demonstrates the motivation behind the choice for the zask-space adaptive control law.

Using the generalized Jacobian relationships defined in Equation (5.20) to substitute for 1 and u

in the first set of equations of motion gives:
F = M(@J (@i +(Claw) +M@JI (@I (qu) T v + G(a)
+, - M(@) (T (a0, 0)T " (@JT (@) + Te(q, )
—C(q,u)T (@) T «(q) (5.42)
Premultiplying Equation (5.42) by J~7(q), and using Equation (5.38) to substitute F for F gives:
F = 77 (@M(@J (@
+777(q) (Cla,v) + M(@)T (@) T (q,w)) T @u' + T T(@)G(q)
+77(@ (£ - M@7 (@) (T (@ 0T @@ + T(aw)
- ClaWI(@T(a)) 5.4)
When there are no prescribed motions, f; and J'+(q) are zero, thus, Equation (5.43) simplifies to:
F = J T (qM(q@JT (v
+777(q) (Cla, u) + M(@T (@ T (@, w)) T (v
+J1(@)G(a) (5.44)

Hence, without prescribed motions, there is a simple transformation between the terms of two sets
of equations of motion. Comparing terms in Equation (5.44) with the equations of motion in

Equation (5.41) developed for u’ gives:

M(q) = I (@M(@T (@ (5.45)
Clqu) = I77(@)(Cla,w) + M@ (@I (@) T (@ (5.46)
G'(q = T T(qG(q) (5.47)
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Similarly, one can show that:
Y'(q v, v, &) = T (@)¥Y(q,u,u, 1) (5.48)

where Equations (5.20) are used to express u and 1 in terms of u’ and W'.

Equation (5.43) and Equation (5.44) demonstrates the relationship between the equations of motion
developed with any two sets of generalized speeds. When there are no prescribed motions, as is usual
in most robotic applications, there exist direct one-to-one mappings between the two sets of inertia

matrices, nonlinear matrices, and gravity torque vectors, given by Equations (5.45-5.47).

5.2.5 Task-Space Control Law Revisited

Employing the generalized relationships developed in this section, the sask-space adaptive controller

given in Section 5.1 can be written in a simple form'>:

Ftaak = ﬁtaak(q)y&aak + étaak(q’ y‘tiaak)yfiaak + (’;taak(q) + fttaak
~task ~
+ (Kwy“" + pry“‘”‘) (5.49)
T = W(@TI(qF"* (5.50)

where,

Fiek = 7T(q)F
M'(q) = T T(@M(a)T '(q)

Clqu) = J7(a)(Clqw)+MaIT (@I (@) T (@
G'(@ = T 7(QG(q)

The control law can be expressed in terms of the parameter vector as:

. . . -~ ~task ~
Ftaak(;)ytaak(q’ y(tiaak’ yf‘aak’ yfiaak)a + fttask + (Kvyytaa + KPyytaak) (551)
The corresponding adaptive update law is:
= taskT . =task ~task
8= Iy (q uaug, 00 (7 + 5t (5.52)

Just premultiply Equation (5.8) by J =7 (q).
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Comparing Equations 5.49 and 5.52 with the original joint-space control law,
7 = M(@)da + C(a,40)aa + G(a@) + Kva + Kpd (553)
and the parameter adaptation law,
6 = I'YT(q, 42,4, da) (§+ <) (5.54)

shows that the sask-space adaptive controller is completely analogous to the original control law, except
for the additional term, ff""’k , 10 handle prescribed motions. Equations (5.49) through (5.52) show
very effectively that control is performed completely in zask space. This provides a satisfying justification
for the form of the sask-space adaptive controller, at least on an intuitive level®.

Although the form of the adaptive controller given in Equations (5.49-5.52) appears much simpler
than that offered in Section 5.1, it is, in general, actually much more difficult to implement. Depending
on the choice of the fask-space objectives, the terms in the equations of motion developed in rask
space, Mte#¥(q), Ct3%¥(q, y****), and Gte#¥(q), can be much more complex than those derived for
another set of generalized speeds. Thus, the zask-space adaptive controller given in Section 5.1 provides
maximum flexibility for implementation. One can derive the system model utilizing a set of generalized
speeds that minimizes the complexity, while still able to control the system in any other choice of
task-space objectives!”.

The following sections provide examples of valid zask-space control objectives other than simple

endpoint control.

5.3 Control in a Noninertial Reference Frame

Controlling in a noninertial, or accelerating, reference frame is an important control mode for a free-
flying space robot'®. This mode is useful when manipulating in the frame of the robot—for example,

when performing docking or assembly while sensing both mating parts from the mobile robot base. The

1€As Chapter 4 shows, however, the stability proof did not not carry through to zask-space quite as readily: An additional
condition that the manipulators stay away from singularity was required.

17This is also why this dissertation continues to distinguish berween sask-space vectors and generalized speeds, despite
showing that the derivative of y*®** is simply another set of generalized speeds.

18Piease note that controlling in a moving or noninertial reference frame is a separate issue from simply controlling from a
moving base. One can perform control from a moving base in a inertial reference frame as well as from an noninertial one.
The difference is whether the desired trajectories are specified as fixed in an inertial or noninertial frame.
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robot base may be rotating or otherwise accelerating, making the robot frame a noninertial reference
frame.

Although all development up to this point has assumed an inertial reference frame, this section
shows that control in a noninertial reference frame can still be expressed as a zask-space objective, making
direct application of the sask-space adaptive control law feasible. This section also presents an example,
based on the familiar two-link arm, that demonstrates the differences between inertial and noninertial

frame control: it shows that for a space robot, the noninertial-reference-frame controller can be more

fuel efficient than the inertial-frame controller.

5.3.1 Adaptive Endpoint Control in Noninertial Frame

The adaptive endpoint control in a noninertial frame also utilizes a generalized Jacobian—but one

derived in the noninertial frame. The kinematic relationship, from Equation (4.15), is:
x = k(q) (5.55)

which is independent of reference frames!®. Differentiating this relationship is dependent on the
reference frame in which the derivative is taken. Doing so in a noninertial frame, B, and expressing it

in terms of generalized speeds gives:

B, _ By
%= PT(a)u (5.56)

where BJ'(q) is the endpoint Jacobian with respect to the B reference frame. Following the same
development as the original Jacobian yields the following inverse relationships:
u = Byl(q)Bx (5.57)
a = P37 (Px- BJ(qu) P37 (q) Px) (5.58)

Thus, choosing the generalized Jacobian to be:

J(q) = B¥(q) (5.59)

allows direct application of the zask-space control law in Section 5.1.
Note that although the noninertial Jacobian does not contain any information about the motions of

the noninertial reference frame, the centrifugal and Coriolis effects of the the accelerating reference frame

The physical position vector to the endpoint may be expressed in terms of different coordinate systems; but, as a physical
vector, it is of course independent of the reference frame.
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are still being compensated by the C’'(q, ug)ug and f; terms in the control law (see Equation (5.8)):

Those terms do include the motions of the reference frame.

Example

The modified two-link arm example illustrated in Figure 5.2 is used to compare the difference between
inertial- and noninertial-frame control. The familiar two-link arm is placed on a mobile base with

a single rotational degree of freedom, represented by g3.  The center of both coordinate systems is

Figure 5.2: Two-Link Arm on a Turntable

@1 and qu represent the shoulder and elbow joint angles, and g3 is the rotation angle of
the turntable. x'*? is the (invariant physical) position vector from the shoulder to the the
manipulator endpoint. a; and a; are mutually orthogonal unit vectors fixed in the inertial
frame, while by, and b, are mutually orthogonal unit vectors fixed in the turntable frame.

assumed to be at the shoulder. The inertial reference frame is defined by the mutually orthogonal unit
vectors, a; and ay, the rotating reference frame of the turntable base is defined by the unit vectors, b,

and bz.
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Define the generalized speeds as:
A .
Uy = q
“w & G+ (5.60)
A .
U3 = @

Also define y**** for inertial control as a combination of the endpoint position—expressed in the
inertial coordinate system—and the base rotation:
xtip - ay
ytaak 2 xtip .ap (561)
a3
For noninertial frame control choose a combination of the same endpoint position—but expressed in
the noninertial coordinate system—and base rotation:
Xtip . b1
ytaak a2 xtP . b, (562)
q3

The inertial reference frame Jacobian can be expressed as:

=lsin(q1 +q3) —lsin(q1 + g2+ q3) —lisin(q + ¢3) — I2sin(qy + @2 + ¢3)
J(@ = Lcos(qi+g5) lacos(qy +q+¢3) licos(qn + gs) + lacos(qy + g2 + q3)

0 0 1
(5.63)

and the base-relative Jacobian is:

—lisin(q1) —lasin(g2 +¢q3) O
BJ(@)=| Lcos(q) Ircos(gz+gqs) O (5.64)
0 0 1

Both controllers compensate for inertial effects, since each set of desired zask-space motions is resolved
first into equivalent desired generalized speeds and generalized-speed derivatives before incorporating
them into the dynamics equations (sec Equation (5.8)). The main difference appears in the feedback
portion of the controllers. The last term in the control law of Equation (5.8),

Ltask

I (q) (Kv,,y + pr'y’“’“> (5.65)
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illustrates the difference between the controllers.

Consider the effect of a pure endpoint error given by:

X = Azb; (5.66)

= Axzcos(gs)a; + Axsin(gs)a; (5.67)

Also consider, without loss of generality, that the position gains are all unity.
The feedback law of the inertial frame controller asks for a compensating generalized force given by
(see Equation (5.8):

—ll sin(ql)
J'(Q)Ti(s.sfs.en —lysin(q1 + ¢2) Az (5.68)
—lysin(q)) — Lsin(q1 + ¢2)

The compensating generalized force called for by the base-relative controller is (see Equation (5.8)):
—~1y sin(q)

_lz sin(ql + q2) Arx (5.69)
0

BJ’(Q)Ti(s.sfs.se)

The first two terms in the generalized-force (mathematical) vector represent output from the
shoulder and elbow motors. Equation (5.68) and Equation (5.69) show that both controllers will
request the same amount of arm motor torques to compensate for the error. The difference is in the last
term of the generalized-force vector, which represents the torque on the mobile base. Equation (5.68)
shows that using the inertial reference frame Jacobian, the controller will compensate in the turntable
for the effects of applying torques to the two-link arm. Equation (5.69) shows that the controller using
the noninertial Jacobian ignores this effect. The base motor is actuated only in response to errors in the
base orientation or angular rate, but not to endpoint-error feedback.

Although one can argue whether the latter is the desired behavior one would expect from a
noninertial frame controller, this behavior is actually beneficial for space-robot control. The controller
can place relatively high feedback gains on the base-relative position and velocity of the end effectors

or a manipulated payload to cancel small tracking errors withour incurring thruster firing?, saving

20The thrusters will fire in response to base position and orientation errors.
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21

precious fuel. The inertial-frame controller will a/ways fire the thrusters® to compensate as needed for

the feedback torques applied to the arms.

5.4 Space-Robot Control—Single Manipulator

The control of a space robot involves controlling the robot base and the manipulator simultaneously
to achicve some desired trajectory of the payload, end effector or arm joints. For payload control, a
natural zask-space control mathematical vector is simply the one containing both the payload and robot
base positions and orientations. Additionally, the payload motions can be expressed in either an inertial
reference frame or the base-relative frame.

Figure 5.3 shows an example utilizing a planar, one-arm space robot. The base has three degrees of
freedom—two in translation and one in rotation—and the arm has two degrees of freedom, totalling
five for the system, as represented by ¢; through gs.

For endpoint control in the inertial reference frame choose??:

x9Q . a,

x9Q . a,
task = q3 (570)

94

gs

such that,

A)'(Q s ay
A*Q -as
. k .

fash = ds (5.71)

q4

- qs -

Implementation of zask-space adaptive controller, therefore, will provide adaptation while simultane-

ously controlling the manipulator endpoint position and the robot base position and orientation.

2 Actually, the thrusters will not fire unless the compensating forces are above the threshold of the on/off thruster controller.
This, however, prevents the use of higher gains for the control of endpoint or payload positions.

ZFor the special case that the end effector grasps the object at its center of mass, endpoint control is the same as object
control.



5.4. Space-Robot Control—Single Manipulator

67

b;

q;

T 24

Figure 5.3: One-Arm Space Robot

1 and q; represent the shoulder and elbow joint angles. g3 and g4 represent the position of
point B on the robot base, resolved into components along a) and ay, respectively. gs is the
orientation of the robot base. x9@ is the position vector from the center of the coordinate
system fixed in A to the manipulator endpoint, while xPQ is the position vector from the
center of the robot base to the endpoint. a; and a; are mutually orthogonal unit vectors fixed
in the inertial frame, while by and by are mutually orthogonal unit vectors fixed in (painted
on) the robot base frame.

On the other hand, for endpoint control in a useful combination of frames, we can choose the

task-space vector to be:

xBe. b,
xB9 . b,
task _

93
a4

(5.72)
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such thar,

ByQ. b,
BxQ.b,
ylok = ds (5.73)

ds

gs

which generates a controller that simultaneously controls the endpoint in the base frame and the robot
base in the inertial frame. A significant benefit of the base-relative controller, as mentioned in Section 5.3,
is that higher feedback gains can be used on the endpoint tracking errors without incurring excessive

thruster firings, thereby saving fuel.

5.5 Control with Motion Constraints

Motion constraints occur when the manipulator comes into contact with a surface or another object.
These constraints can often be incorporated into the task-space vector by considering the relative velocity
between the endpoint and the surface or payload object. Figure 5.4 shows a planar arm about to grasp
an object. The payload is modelled as part of the system, where its position is described by g3 and g4.
The object is assumed, for simplicity of presentation, to be circularly symmetric, and the grasp point,

x99, is at the center of the object?.

For this situation it is advantageous to let the rask-space vector be composed of the endpoint position

and the relative position between the endpoint and the grasp point on the object:

x99 . a,

x99 . a,
(xOQ - xOQ') - ay
(xoo - xOQ’) -ay |

task —

(5.74)

BThe only reason for this requirement is because, with only two manipulator joints, and no orientation control at the end
effector, the orientation of the object is uncontrollable. The problem can be expanded readily to include a rotational joint at

the gripper.
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Figure 5.4: Motion Constraint

¢ and g, represent the shoulder and elbow joint angles. The object is modelled as part of the
system, and its position is given by g3 and qs. Q marks the endpoint of the manipulator, and
Q' is the grasp point on the object. When the manipulator grasps the object, Q coincides with
Q'. a, and a; are mutually orthogonal unit vectors fixed in the inertial frame.

such that
[ %9 . a; 1
. Q .
ylork = B (5.75)
()'(Q - )'CQ ) *a)
L (J'{Q —)'(Q’) ay ]
J 0
_ (@ u (5.76)
| J(@) Iz
= J(q)q (5.77)

where J(q) is the endpoint Jacobian, Ip» is the 2 X 2 identity matrix, u = q, and J(q) is the
resulting generalized Jacobian. To enforce the motion constraints, the controller simply specifies that

the last two terms of the desired trajectories, y{2¥, yok

, and j"fi“"k, be zero.
This example will be useful when formulating multiple-manipulator cooperative control in Chap-

ter 6. The force constraints that occur at the grasp point will also be examined in Chapter 6.
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5.6 System-Momentum Control

Control of the total system momentum can be useful for space robots as a fuel savings measure. By
controlling endpoint or object motions while maintaining constant system momentum, no thrusters
will be fired, ensuring that no fuel is expended. With no thrusters, the robot base will of course react
to the motions of the manipulators. The controller compensates appropriately for these base motions
to allow accurate trajectory tracking of the endpoint or payload object.

This section shows that the system linear momentum and angular momentum can be expressed
as yet another set of task-space objectives. In particular, they are shown to be a linear function of
generalized speeds?4.

The linear momentum L® of a system of p bodies is the sum of the linear momentum of each body

i in the system?>:

p .
L =YL (5.78)
=1
P i*
= Z m;v* (5.79)
i=]
where v*" is the velocity of the center of mass of body i.
Expressed in terms of generalized speeds, L° becomes?:
P noo
L® = Zm.- Zv; Uy (5.80)
=1 r=1
P n .
= Z Z m;v, u, (5.81)
=1 r=1
n p .
= E Z m;v:. Ur (582)
r=1i=1
= Y Lu, (5.83)
r=1
= [L,S] u (5.84)

where LY is the partial linear momentum given by:

P .
LS = Zm;v: (5.85)
=1

UGee Koningstein [19] for more details.
% Formally, this is the linear momentum of S in frame A if the velocities are also in A.
% Because the whole system is being modelled, there are no prescribed motions, making v} zero.
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and the matrix notation, [Lf ] , is given by:

[Lf] = [ L ... LS ] (5.86)

Similar arguments follow for the central angular momentum H5/5" of a system of p bodies about

the system mass center $*:

p Ty - »
HS" = Y H/" +HY/S (5.87)

i=1
p s o : .k T

= Y I/t x5 xmvt (5.88)
i=1
P i /1t id : .l i L]

= EI'/' Zw;ur +x5 xmy Zv; U, (5.89)
=1 r=1 r=1
n p ] . L] .y

= Z (Z ) A w;y + x5 x m;v; ) Uy (5.90)
r=1 \i=1
n p Yy - .

= Z (Z HY" + x5 x L;) Uy (5.91)
r=1 \i=1

= Y Hu, (5.92)
r=1

- [Hf/s'] u (5.93)

LPL ) .. .
where x5*¥" is the position vector from the system center of mass to the center of mass of body 7, and

575" is the partial central angular momentum of the system given by:

p P 1 -'% .
HY/S =S HYY +x57 xL; (5.94)
i=1
The matrix notation, [Hf/ S‘] , is given by:
[H5/5"] = [ H/*" .. HYY ] (5.95)

Thus both L and H%/5" can be viewed as alternate generalized speeds (see Equation (5.15)). As
such, they are valid choices for elements in the zask-space vector?’.
When no adaptation is required, the zask-space controller presented in Section 5.1 can be used

directly to control system momentum. That controller, however, cannot in theory be implemented for

77 Since the task-space vector needs to have 7 elements—matching the degrees of freedom in the system—the system linear
momentum and angular momentum by themselves do not of course provide sufficient degrees of freedom to complete a
task-space mathematical vector.
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adaptation, because the terms in the generalized Jacobian corresponding to [L;? ] and [ 5/ S.] contain
unknown parameters, such as masses, moments of inertia, and the center-of-mass location for each body
i. In this case, the adaptive controller formulated completely in sk space, as given in Section 5.2.5,
may be required. Utilizing this form of the controller, however, increases controller complexity. The

noninertial reference frame controller may be a better candidate for fuel-efficient control.

The one-arm space robot illustrates the control of system momentum. Figure 5.5 depicts the system.

Since this is a planar system, the system linear momentum involves two degrees of freedom in the plane,

Figure 5.5: One-Arm Space Robot—Momentum Control

g1 and g, represent the shoulder and elbow joint angles. g3, g4, and gs represent the position
and orientation of the robot base. Q marks the manipulator endpoint, and S* marks the
systemn mass center at this instant. a; and a; are mutually orthogonal unit vectors fixed in the
inertial frame, while b, and b, are mutually orthogonal unit vectors fixed in the robot base
frame. a3 and b; are unit vectors perpendicular to the plane and point out from the plane.

and the angular momentum only involves one degree of freedom—rotation about an axis in a direction
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perpendicular to the plane. Choose the fask-space mathematical vector such that its derivative is:

AJ'CQ a) ]

A)'CQ ca

yer = | LS.a (5.96)
L5 &

HS/S" . ay
J(a)
]

= J(qu (5.98)

.

where J(q) is the 2 X 5 endpoint Jacobian in the inertial frame, [Lf] is the 2 x 5 partial linear
momentum matrix, and [Hrs / S'] is the 1 X 5 partial angular momentum matrix.
To maintain zero system momentum while controlling the endpoint, simply set the last three terms

stask

task taak’ and ¥4k, to zero.

in the desired zask-space trajectories, y /**", ¥ 4
Base-relative endpoint control can be achieved by choosing to use the base-relative endpoint Jaco-

bian, BJ(q), in ytaakzs.

5.7 Redundancy Management

Task-space control offers a limited solution to the control of redundant mechanisms. Whether a system
is redundant involves consideration of the number of degrees of freedom (DOF) in the system versus
the number of degrees of freedom to be controlled. If the number of controlled degrees of freedom is
less than that of the total system, the control is said to be redundant.

The classic example is the control of a manipulator end effector in six degrees of freedom—three in
position and three in orientation—with a 7 DOF manipulator. The endpoint Jacobian for this system is
nonsquare, so the direct matrix inverse used to derive joint rates from endpoint velocities is unavailable.

Most redundant-control research has concentrated on utilizing the generalized inverse of the Jacobian:

a0 =17(a) (3@I7(@) " %+ (1 - 37(q) (3@ (@) J(q)) x (599

%1 actual implementation, proportional or pulse-width-modulation thruster control would still use a significant amount
of fuel, because the base-relative endpoint errors, while small, do not stay exactly zero. Combining this control mode with
on-off thruster control, on the other hand, would keep fuel use zero for extended periods.
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where X; can be any vector. The last term represents motion in the null space of J(q); that is, internal
motion that will not affect the endpoint motion. Without X;, the desired st of joint rates 44 minimizes
the energy expended in meeting the desired endpoint trajectory Xq. Many researchers argue of course
for the attractive option that adding X; can make the manipulator achieve additional objectives, such as
singularity avoidance or obstacle avoidance, while tracking endpoint trajectories. In practice, however,
it often occurs that choosing X to achieve the additional objectives is difficult. Moreover, solving the
generalized Jacobian inverse, J7(q) (J (a)J T(q)) - , can be computationally expensive.

The task-space control approach, however, allows direct choice of the additional objectives. In the
one-arm space robot example, the additional objectives are represented by either the direct control of
the robot base motions or the system momentum??. For those tasks involving redundant manipulators

where additional control objects can be appropriately chosen, zask-space control offers a simple solution.

5.8 Conclusions

Task-space control is a powerful concept for use in the control of robotic systems. It allows the
control engineer to develop the system model, or equations of motion, in its simplest form utilizing an
appropriate set of generalized speeds; yet it allows him to control any variables that can be expressed
as functions of the generalized coordinates. The rask-space control vector can contain a mixrure of
physically dissimilar quantities, containing joint motions, Cartesian motions, motion constraints, and
even system momenta, as long as the size of the zask-space vector matches the total number of degrees of
freedom of the robotic system. Finally, utilizing the stability proof for the endpoint adaptive controller,
one can show with negligible effort that the same proof demonstrates the stability of the rask-space

adaptive controller.

B This is also the approach chosen by Seraji [35) for the contro! of single-manipulator robots.



Chapter 6

System Concatenation

Multiple manipulators grasping a common object form closed kinematic chains. Given the fully reduced
set of equations of motion for such a system, the new task-space controller may be used directly for
control. The closed-kinematic-chain equations of motion, however, can be very complex to derive,
hampering implementation. System concatenation is a concept that eliminates the requirement for
deriving the complex closed-chain equations, but can still work well with the new sask-space adaptive
controller to provide cooperative control for multiple manipulators.

System concatenation is a modelling technique that provides for efficient, incremental generation of
total system models for multiple, interacting system, such as multiple arms cooperatively manipulating
an object. It takes full advantage of models already developed for each manipulator or robot subsystem
to minimize the effort in deriving the total system models. This formulation eliminates the need to
develop and solve for the closed-kinematic-chain equations of motion, simplifying implementation. It
also keeps separated the parameters of each robot subsystem, allowing the ability to separately “tune”
the adaptive control for each subsystem.

Essentially, system concatenation simply stacks, or concatenates, the equations of motion of each
subsystem into a larger, total system model. The coupling between each subsystem is handled through
constraints—motion constraints and force constraints. This idea is not new. Many simulation tech-
niques are based on this concept. Its use in consrols in its generalized form, however, is to the author’s
knowledge, novel. System concatenation does of course increase the order of the set of system equations.
This disadvantage, however, is offset by the ease of forming the equations of motion, minimizing the

possibilities for error when the algorithm is implemented on a digital computer.

75
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The system concatenation approach utilizes fask-space control to incorporate the motion constraints
into the task-space control objective, and specifies desired zask-space trajectories that are consistent with
these constraints. Explicit modelling of the force constraints also allows the controller to specify load
distribution amongst the manipulators in addition to specifying internal forces to be applied on the
manipulated payload.

Section 6.1 defines the structure of the equations of motion for the concatenatedsystem. Sections 6.2
and 6.3 derive the motion and force constraints in terms of the generalized Jacobian, allowing them
to be incorporated into the rask-space controller. Section 6.4 utilizes the constraint forces to derive
the mapping from object forces and torques to end-effector forces and torques—a mapping thar allows
the specification of load distribution and of the “squeeze” forces experienced by the object being

manipulated.

6.1 Modelling

A pair of manipulators grasping a common object form a closed kinematic chain. The motion
constraints at the grasp points reduce the number of degrees of freedom for the system. The equations
of motion for the reduced-order system involve solving the closed-kinematic equations—a very complex
set of equations in general. Moreover, to perform adaptive control, these equations must be solved
symbolically in order to determine how the equations of motion depend on the physical parameters of
the system. While this can be done for any system, updating the model as the system changes—adding
manipulators, for example—can be extremely costly.

As Koningstein [19] demonstrated at ARL, however, a well-designed controller did not require the
reduced order equations of motion. The controller treated the system as an open-chain system by
breaking the kinematic chain at a grasp point and modelling the payload as an additional link on one
of the manipulators. The controller continued to enforce the motion and force constraints at the grasp
point by specifying desired trajectories and desired forces that were consistent with the constraints.
Doing so allowed the manipulator system to perform its task without putting undue stress on the
manipulated object.

System concatenation carries this approach a further step. It breaks the kinematic chains at a// grasp

points!. One benefit is that the controller can take advantage of the system models already developed

'If there are more than two manipulators there are more than one kinematic chain,
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for individual manipulators and objects. It does not have to modify the equations of motion of a
manipulator to include the object as an additional link. All manipulators are treated equivalently. Most
importandy, this approach is applicable for any number of manipulators and objects.

Another benefit of system concatenation for adaptive control is that the physical parameters of
individual manipulators and objects are kept separated. This allows the adaptive controller to isolate the
physical parameters associated with each subsystem into separate portions of the adaptable parameter
vector. If only a subsystem, such as the payload object, is unknown, the parameter separation property
minimizes the number of parameters that must be adapted. The parameter separation property also
ensures that the controller can take full advantage of all that are known in the system. At the same
time, separable parameters does not prevent the adaptive controller from simultaneously adaptive to all

the parameters for the entire system.

6.1.1 System Concatenation Formulation

System concatenation considers individual robots and objects as subsystems of the entire manipulation

system. Let each of these subsystems 7 be modelled as:
F; = M'i(qi)ti + C'i(qi, wiui + G'i(q) = Y'i(qi, wi, ui, 0)6; (6.1)

where q; € R™ is a vector of generalized coordinates?, u; € R™ is a vector of generalized speeds, F; €
R™ is the vector of generalized active forces, M'i(q;) € R™*™ is the symmetric, positive-definite
inertia matrix, C';(qs, u;) € R™*™ is the matrix of Coriolis and centrifugal terms, G’;(q;) € R™
is the vector of gravity torques, Y';(q;, u;, u;, 0;) € R™*Pi is the regressor’, and 8; € R is the
parameter vector, all defined for the subsystem 7. The equations of motion for an entire system with m

subsystems can be expressed as:

F] M’l 0 0 'l:ll Cll 0 0 u)
+Fc = o . 0 S|+l o .0 : (6.2)
Fm o o M, U 0 o0 Cp,p Um

2Generalized coordinates are used in the development for maintaining mathematical generality to facilitate implementation
on a digital computer. In all the examples, the generalized coordinates are simply chosen to be convenient geometric coordinates
that can be easily measured.

3The term “regressor” is typically used in system identification to refer to the mathematical matrix that contains the states
of the system and none of the plant parameters.
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+ : (6.3)

0 = x¢ (6.4

where Xo € R¥ represents N motion constraints, F¢ € R™ is vector of generalized constraint forces
that result from the motion constraints, and n = n +... + ny, is the degrees of freedom for the entire

system. The equations of motion can be expressed in terms of the regressor and parameter vectors as:

F, Y, 0 0O 6,
+F¢c = o . o : (6.5)

Fm 0 0 Yn||Onm
0 = x¢ (6.6)

Note how the individual parameter sets, 8;, are kept separated.
This demonstrates that the equations of motion for the entire system is almost trivial to form, given
the individual equations of motion. What remains are the examinations of the motion constraints and

the generalized constraint forces.

6.1.2 Example

The example in Figure 6.1 illustrates the system concatenation approach®.  The picture at the left
represents the separate subsystems and the one at the right represents the entire system when connected.
The individual equations of motion, ignoring gravity, are listed with each subsystem. When not
grasping the payload, the system has seven (7) degrees of freedom. When grasping, the constraints
reduce the system to three (3) degrees of freedom, most easily seen as the position and orientation of the
object. That is, given the position and orientation of the object, all the arm joint angles are uniquely
determined.

The generalized coordinates, qqarm, € R? and qgrm, € R, correspond with the joint angles

for the two manipulators, and qg; € IR’ represents the position of P—the center of mass of the

“The example shows that system concatenation simply utilizes D’Alembert’s Principle to combine the equations a/ready
developed for the individual systems to form the full system equations of motion, One could have started with D’Alembert’s
Principle, of course, to derive the full equations of motion from scratch.
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arm, arm,

R Y 2 R Y ’
F,=M,_u +C_u_ F, =M_u +C_u_

arm, “arm; arm; “arm;

Figure 6.1: System Concatenation

The system of two manipulators and the not-yet-captured payload object is illustrated at the left
as separate subsystems. Their individual equations of motion are listed below each subsystem.
System concatenation brings the separate subsystems together to mode! the complete system
after the object is grasped. ¥9' and X9 are the endpoint velocities, 19 and x9 are the
velocities of the grasp points. 91 and £ represent forces on each manipulator at its endpoint,
and f91 and £9: represent forces on the object at each grasp point.

payload—and the orientation of payload body D:

P

X' -ay

e = | xF-a; (6.7)

ol

Define the generalized speeds as the time derivatives of the generalized coordinates:

Warm; = C.larrm
(6.8)

Uarm; = Qarm:

Uobj = Qobj

Rather than generating the reduced set of equations of motion, system concatenation retains the full

seven degrees of freedom and additionally models the constraints, resulting in the following equations
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of motion:

Farm, M’armx 0 0
Farmz +Fc = M,armz 0

Uarm,

Warm, (6.9)
liobj

C’arml 0 0 [ Uarm,
8
o

+ 0 Carm, O Uarm, (6.10)
0 0 Clobj ) Wob; ]
Y arm, 0 - army
= | 0 Yem arm3 6.11)
0 0 Y ob; i 0ob;
and motion constraints:
x@ — xQ
O4x1 = <9 _ 5% (6.12)

where 04y represents a 4 X 1 vector of zeroes.

6.2 Motion Constraints

The motion constraints in a system of multiple manipulators grasping an object are best represented by
constraints on relative velocities—in both translation and orientation—between each manipulator end
effector and its grasp point on the object. Specifically, the relative velocities are constrained to be zero.
As Section 5.5 showed, these constraints can be adequately represented by #ask-space control objectives.

Figure 6.2 illustrates the constraints for multiple manipulators. The relative velocity between each

end effector Q; and its grasp point Q) satisfies the relationship:

%o, = X% -x% (6.13)
(5.22) ; v — Z.; Vr 2“' (6.14)

(5.24) [v?‘] u- [vgé] u (6.15)

= ([#]-[])u (6.16)

where X¢, € R? is the relative velocity between the two points, and [V,.Q "] € R?*7 and [vrQ 2] € R>¥7

are the matrix of partial velocity vectors associated with Q; and @, respectively.
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iq =*Qf_"‘Qi

=J%q)u

Q, x?

Cron J7777777777

Figure 6.2: Motion Constraints

A motion constraint exists at each grasp point. Q; is 2 endpoint of manipulator i, and Q] is
the associated grip port on the payload object. ¥% is the endpoint velocity, and x is the
velocity of the grip port. When the object is grasped, the relative velocity between Qi and Q;
is constrained to be zero. The constraint velocity Xc, can be expressed in terms of a generalized
Jacobian T and the generalized speeds u. a;, az, and a3 are mutually orthogonal unit vectors
fixed in the inertial frame.

Defining a generalized Jacobian component for the ith relative velocity x¢; as
7% @) & [v¥] =[] (6.17)
the relative velocity can thus be expressed as:

o — Ci
XCig o1 (Q)u (6.18)

In general, there also may be rotational constraints at the end effector. If the manipulator has a
solid grasp of the object, for example, then the relative angular velocity berween the end effector end;

and the payload D must be zero. These can be represented by:

wg, = wm-wP (6.19)
n n
end,' D
= Wy Up— ) wyu 6.20
& Z; Y, Z; Pt (6.20)
_ end; _ D
53 [wr ] u [w, ] u (6.21)
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= (o) - (2] =
= J%@qu (6.23)

The expression for angular velocity constraints is completely analogous to that of the linear velocity
constraints of Equation (6.18). Hence, angular velocity constraints also can be incorporated into the
task-space control vector.

When the payload is grasped, these relative velocities are constrained to be zero. To enforce these
constraints, the task-space controller incorporates these equations into the zask-space control vector
along with the payload object motions:

Xobj
Xc,
ylask _ *CN (6.24)

wWe,

w
-3 CN -
The only requirement is that y*** has the same degrees of freedom as the open-chain system.

By specifying zero for the constraint terms in the desired task-space vectors—y'*%, yt3°F, and
yi2*%—the trajectory generator requests motions in the system that are completely consistent with the
motion constraints. The controller simultaneously enforces these constraints and the desired payload

motions.

Example

Using the same example in Figure 6.2 with a pair of planar arm and a rigid payload object, choose the
task-space control velocity vector to be a combination of the payload Cartesian and angular velocities

and the relative velocities between the end effectors and their grasp points®:

Uobj
X, (6.25)

Xc,

Jtask _

Yy

3 Assume that the end effectors have pin connections, so that there are no rotational motion constraints at the end effectors.
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where u; are the generalized speeds associated with the object, and X¢, and Xc, are the motion
constraints for the two manipulator end effectors. The associated generalized Jacobian is:

- -

1 0 0
Osx4 [0 1 O

T(q) = 001 (6.26)

T (q)
JT%(q)

which utilizes the constraint Jacobians of Equation (6.17).
Since the relative velocities between each end effector and its grasp point is constrained to be
zero, the controller simply sets the last four elements of the desired task-space position, velocity, and

acceleration vectors—y{*¥, yi**, and j"f,“"k—to zero.

6.3 Force Constraints

In addition to motion constraints, there are constraint forces at the manipulator end effectors. The end
effectors must exert forces on the object to make it move. This section determines the nature of those
constraint forces.

Figure 6.3 shows the two resultant forces at each grasp point. The endpoint exerts 2 force £9
on the object at @/, and the object exerts a force f Q: on the endpoint Q;. These forces are equal but
pointing in opposite directions:

£ = _f (6.27)

Analogous relationships exists for constraint moments m. These constraint forces and moments can be

expressed as generalized constraint forces:

T T
Fo =, % [VE] £* + % ] m' (6.28)
constraint constraint
forces k moments |

Combining the two forces at each grasp point halves the number of terms in its sum, and combining

the two moments at each grasp point points also halves the number of terms in its sum. These are
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Q= _f2

<
f fc, =j°(q)fQ'

i

Figure 6.3: Force Constraints

Q: is a point coincident with the ith end effector, and Q) is coincident with the ith grasp point
on the object. £ is the force on the end effector passing through Q;, and €94 is the force on

the object passing through Q.. The constraint force F¢, can be expressed in terms of the same
generalized Jacobian J™* utilized for the constraint velocities.

indicated by the changes in the summing indices from & to ¢ and { to j:

o= x e[
all

constrained
grasps ¢

nd. 1T ) T ’
+ Z [wi ? ] me"% 4 [w? ] mI"*°F;
all

oonstrainpd
grasps j

s o) e
all

constrained
grasps i

;1T 4 T _
+ Z [wgn :] me™di — [WP] me™d
all

constraingd
grasps J

£ (b -

grasps ¢

(6.-_2.7)
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> ([wm]” - [+2]") mss

oonstrainpd
grasps J
T
= ¥ J%Mf%+ ¥ II (@m™h 6.29)
(6.17) T 7
constrained constrained
grasps i grasps §

The generalized Jacobian components, 7¢(q) and J G (q), in Equation (6.29) are the same ones
that appear in the velocity and angular velocity constraints (see Equation (6.18) and Equation (6.23)).

Hence, for a system with N end effectors, the generalized constraint force can be written in matrix

notation as:
£ ]
T £oN
Fog, | 79@ .. I%@ IS@ - T ] ) (6.30)
. men t
i mendN ]
Define the constraint Jacobian J©(q) as the first matrix of Equation (6.30):
@2 | 7% .. 7%@ T9@ . I¢W@ | (631)

Those terms corresponding to end-effector degrees of freedom that are not constrained may be dropped.

Example

For the example in Figure 6.3, the generalized constraint force vector is given by:
T| £

Fc = [ T @) JC’(Q)] o (6.32)

where T (q) and J©(q) are the constraint Jacobians for the two end effectors, and f Q1 and £92 are
the end-effector forces.
6.4 Force and Torque Mapping

The task-space adaptive controller of Equation (5.8), however, cannot be implemented directly with

multiple-manipulators utilizing system concatenation. One small modification remains. Because system



86 Chapter 6. System Concatenation

concatenation model represents the payload object as a separate system, the commanded generalized
active forces resulting from the control law contain elements that correspond to forces and moments
on the object. Since the object does not have actuators of its own, these forces and moments must be
supplied by the manipulators. An additional mapping is required to map the commanded forces and
moments on the object to commanded manipulator forces and moments.

Consider the two planar arms and object in Figure 6.1 as an example. The generalized active force

for the system is (see Equation (6.11)):

Farml

F= (6.33)

Farmz

Fobj

The generalized forces on the object, represented by F o, must be mapped back to the generalized
active forces corresponding to the manipulators, Fgrp, and Fyrm,.

This section develops this force and moment mapping by explicitly modelling the constraint forces
and moments at the manipulator end effectors. This approach first solves for the required end-effector
forces and moments required to generate the requested force and torque on the object resulting from the
control law, it then uses the result from Section 6.3 to transform the end-effector forces and moments into
generalized constraint forces. The sum of the generalized active forces and the generalized constraint
forces forms a pseudo-generalized active force vector F such that the system concatenated model in
Equation (6.3) can be used directly in the rask-space adaptive control law, Equation (5.8), with F
replaced by F.

6.4.1 End-Effector Constraint Forces and Moments

The required end-effector forces and moments needed to apply the desired force and torque on the
object is not unique, as the free-body diagram in Figure 6.4 illustrates. The vector R € R? represents
the resultant of all the end-effector forces and acts on a line passing through the center of mass of the
object®, and T € R3 is the total torque placed on the object by the end-effector forces and moments.
At each grasp point @/, there may be a force f; € R? and a moment m; € R3, and each p; € R?

represents the position vector from the center of mass to the associated grasp point Q.

®If the sask-space control objective is to control the position of some other point P on the object, then the analysis uses
the point P rather than the center of mass. P is commonly known as the remote center of compliance(32, 49).
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a

Figure 6.4: Object Free-Body Diagram

R is the resultant of all forces acting on the object whose line of action passes through the
center of mass of the object, T is the total torque on the object, f; and my are the forces and
moments applied at point Q/, and p; is the position vector from the center of mass to point
Q’. The vectors ay, a2, and a3 are mutually orthogonal unit vectors fixed in the inertial frame.

For a manipulator system with N end effectors, the resultant force R and the torque T can be

related to the end-effector forces and moments as:

R N £
= N Zizi N (6.34)
T 2j=1mj+ Yo pi x fi
r 9
fi
_ Isxs ... Isx3 O3x3 ... O3x3 fn (6.35)
P, ... Py Iixs ... I3xs3 m;
| My |
where P; € R3*%3 is the cross product matrix,
0 -pica; Ppicaz
Pi = Pi- a3 0 -pi ' (636)
—pi-a; Ppi-a 0

Equation (6.35) represents an under-constrained set of equations, such that there is no unique inverse

mapping from the resultant force and torque to end-effector forces and moments.
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Let the W, € R®*6N denote the mapping matrix:

—_— Isxs ... Isx3 O3x3 ... O3x3 (6.37)
ObJ — .
Pl fee PN 13)(3 cee I3x3

and let waj € R5VX6, the weighted pseudo-inverse of Wb be:
-1
Wi £ ATWE; (W AT'WE)) (6.38)

where A € RSV*6N is any weighting matrix and represents the desired manipulator load distribution.
When A is the identity matrix, the solution weights all manipulators equally. The general solution for

end-effector forces and moments now can be expressed as:

]
v R
= ij + (I6Nx6N - WLjWobj) fruz (6.39)
m; T
[ MN

where 54, € RV is any optional auxiliary input. Those terms in Equation (6.39) corresponding
end-effector degrees of freedom that are not constrained may be dropped.

The premultiplier of f5,, chooses the portion of 5, in the null space of W ; this term represents
internal loading on the object that generates no motion. Usually, this entire term can be replaced by
fint that is chosen to represent the desired internal object “squeeze” forces.

Utilizing the generalized constraint force of Equations 6.30 and the constraint Jacobian of 6.31,

Equation (6.39) can be expressed as:

f
Fe = J%%@| "

mpy
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T R
& 70 @ wl, o | (6.40)

Hence, given the desired generalized active forces for the payload computed by the ask-space control
law (Equation (5.8)), Equation (6.40) produces the equivalent set of generalized constraint forces. This
relationship is used in the following chapter to round out the development of the complete zask-space

adaptive controller.
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Task-Space Adaptive Controller

Combining system concatenation and rask-space control into the same framework results in a very
general adaptive controller for rigid-link robotic systems that can contain any number of cooperating
manipulators and payload objects, operating in any number of control modes. This chapter formally

presents the control and adaptive laws of the rask-space adaptive controller, and summarizes its properties.

7.1 Control Law

Utilizing system concatenation, partition the robot system model into M actuated subsystems denoted

by the subscripts arm; and m unactuated subsystems denoted by subscripts 0bj;. The system model

can be expressed as':

F+Fc = M'(qQu+C'(q,u)u+ G'(q) (7.1)

!This control framework is equally applicable for simpler robotic systems. For a single-manipulator system, there would
be only one partition and no constraint equations.

90
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where xc € R are N motion constraints and the partitions are:

M/'(q)

qGTﬂ'H

Qarmps

qobj:

| Qobjm

Uarm,

Uarm s

u‘,bjl

[ UWobjm

Farm1

Farm M

Fobj,

| Fobjm |

'
M armi

o O ©o o

=]

S © © ©

0 0
0
Ml armag
0 M/ o5,
0 0
0 0

©c © © O

©c © o © ©

&

m

(7.3)

(7.4)

(7.5)

(7.6)




92 Chapter 7. Task-Space Adaptive Controller

Clam, 0 O o o o
0 0 0 0
Clqu) = 0 0 Corm ° 0 7.7)
0 0 0 Clojy O 0
0 0 0 o . 0
| O o 0 ] 0 C’objm ]
G,arrrn
GI
G(q = | "™ (7.8)
G’Objl
G’ obj
L objm |
Additionally define the pseudo-generalized active force F to be:
FEF+F¢ (7.9)

The control law for the rask-space adaptive controller now can be expressed as:

~task

F = M(qu+C(quius+G(q)+f+I7(q) (KVyy + Kpﬁ“‘"“) (7.10)
(7 - 77 (@fine) (7.11)

where y*** includes the motion constraints Xc and the corresponding terms for the constraints in
the desired zask-space trajectories—y’**, ¥, and §%***—are set to zero. See Section 7.3 for the
derivation of the actuator mapping of Equation (7.11). The control law can be expressed in terms of

the parameter vector as:

F 5 Y (@0, 0000 + £ + 7(@) (K™ + Kp, 7% (7.12)

The adaptive update law is:

6 = I'Y'"(q,ug, ug, 1) 7 (q) (?*“"‘ +egher) (7.13)
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Figure 7.1: Block Diagram of the Zask-Space Adaptive Controller

The task-space adaptive control tracks task-space trajectories by performing feedback directly
on the task-space errors, 7***. The adaptive parameter update is also based on the task-space
tracking error. This controller structure differs from the single-manipulator task-space adaptive
controller, Figure 5.1, by the more sophisticated actuator mapping, given by Equation (7.11).
The desired internal forces on the payload, fint, also may be specified. Generalized Jacobians
transform the task-space values into equivalent gencralized speeds values.

Figure 7.1 shows the block diagram of the complete rask-space adaptive controller, incorporating
multiple-manipulator control.  The grayed manipulator system blocks indicate that the zask-space
adaptive controller is capable of handling any number of manipulators and objects, and they may be
added to the system at any time, as long as the associated Jacobians are updated accordingly. The
cooperative manipulator also requires a more sophisticated force- and moment-mapping block given by
Equation (7.11) to derive the actuator forces and torques from the control law. This actuator mapping
reduces to the identity matrix when the robot is not performing payload object manipulation, so this
controller structure is a superset of the single-manipulator task-space adaptive controller of Figure 5.1.
The internal “squeeze” force, fins, on the payload object may be specified, a most valuable capability
when handling fragile objects.

The block diagram also indicates that switching control modes is a simple marter of switching to the
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appropriate Jacobian and the appropriate force- and torque-mapping blocks. The valid control modes

can range from single manipulator joint control to cooperative multiple-manipulator and multiple-

payload object control from the free-flying base of a space robot.

7.2 Controller Properties

The following items summarize the features of the zask-space adaptive controller.

Task-space control. The task-space is an abstraction of control modes. The controller changes
control modes by changing the definition of the fask-space control vector. Thus, the rask-space
controller is capable of handling any number or mixture of control modes from cooperative
multiple-manipulator control on a free-flying base to single-arm joint control. The feedback is

performed directly in the chosen rask-space to minimize rask-space trajectory tracking errors.

Inverse-dynamics controller. The task-space adaptive controller is 2 model-based controller. The
“Inverse Dynamics” block compensates for the inertial effects and the nonlinear Coriolis and
centrifugal force terms. The adaptive controller updates this inverse dynamics model to minimize
trajectory tracking errors. For closed-kinematic-chain systems, system concatenation is utilized to

simplify the inverse-dynamics model.

Tracking-error adaptive control. The parameter vector 8 used in the inverse-dynamics block of
the controller is adaptively updated. The parameters, and thus the plant model, are updated to

minimize zask-space trajectory tracking errors.

Separable adaptation parameters. For complex systems with multiple subsystems, system con-
catenasion modelling keeps separate the adaptable parameters of each subsystem. Doing so
allows separate adaptation of each subsystem without sacrificing the capability for simultaneous

adapration of the entire system.

Generalized Jacobian. The gencralized Jacobian is the key to zask-space control. Any quantity that
satisfies the generalized Jacobian relationship (see Equation (5.7)) can be utilized as a task-space
control vector. Changing control modes requires changing the generalized Jacobian blocks to

match the new sask-space control vector.
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o Actuator mapping. For implementation, an additional mapping is required to transform general-
ized active forces—or pseudo-generalized active forces for closed-kinematic-chain systems—into

actuator forces and torques.

o Controller insensitivity to sensor noise. As with the original joint-space adaptive controller, the new
task-space controller is insensitive to sensor noise during regulation. Because the the inverse-
dynamics feedforward block utilizes desired, not measured, trajectory velocities and accelerations,

sensor noise does not produce unwanted feedforward actuation.

o Adaptation insensitivity to sensor noise. Since the adaptation update law also utilizes the regressor,
Y (4, ug, ug, @g), that contains desired velocities and accelerations, it is not sensitive to sensor

noise during regulation. The parameters do not drift.

7.3 Actuator Mapping

The actuator mapping utilizes the generalized-constraint-force expression of Equation (6.40) to replace

Fc in the expression for the pseudo-generalized active force F:

r -

Fa.rm1
P Fob;,
_ armag cT wf _ . £,
(6.30,6.39) Fos;, +J77 @ obj : + Rint
Fobj,,.
| Fobjm |
Farmx

cT 1
_ Imxm JT° (W, Farmy +JCT(q)f.~nt

o Lnxm Fobj,
| Fobjr |
I T Wl .

0 Imxm



96 Chapter 7. Task-Space Adaptive Controller

where J€(q) is the matrix of constraint Jacobians defined in Section 6.2. The inverse relationship

needed in the control law is?:

T = WT(F

IMxm -T CT(Q)WLj

= WT(q) (- JCT(q)f,-,,,,) (7.15)

Imxm

7.4 Conclusions

The system concatenation concept furnishes to the zask-space adaptive controller the ability to control
multiple cooperating manipulators. Moreover, it does so in an efficient manner by not requiring the
complex closed-kinematic-chain equations of motion. Cooperative manipulator control incorporates
motion constraints at the end effectors into the sask-space control vector, and utilizes the explicit
modelling of end-effector constraint forces and moments to generate a mapping from generalized active
forces and generalized constraint forces to actuator forces and torques.

The resulting control law equations are of higher order than those resulting from the use of the
closed-kinematic-chain equations of motion, but the simplicity of the block-diagonal nature of the
concatenated system equations more than offsets the disadvantages of the increased order. Additionally,
the generalized Jacobians tend to be sparse matrices, and sophisticated matrix computation algorithms
can take advantage of that to reduce further the computational burden. Finally, the use of system
concatenation does not prevent the fask-space controller structure from handling simpler single-arm

control: All that is needed is the appropriate generalized Jacobian.

*The following matrix relationship is true for any matrix W € R™*™;

Inxn w - = Inxn W
0 l'm)('m 0 Imxm



Chapter 8

The Experimental System

This chapter briefly describes the experimental system. More details can be found in Ullman’s thesis[43].
Adaptive control of a free-flying space robot motivated the development of the new sask-space
adaptive control framework. Therefore, the task-space adaptive controller has been implemented on
the Multi-Manipulator Free-Flying Space Robot experiment in the Acrospace Robotics Laboratory
(ARL) for verification. Utilizing air-bearing technology, this facility has pioneered the research in space
robotics by simulating the drag-free conditions of space with high fidelity in the laboratory([43, 19, 1].
The Multi-Manipulator Free-Flying Space Robot was designed to meet some very specific goals:

e The robot must be completely self-contained and free-flying, containing all the key components

to be found on a real space robot.
o The space robot must be capable of autonomous operations.

e User interaction with the robot must occur at a high level to ease the burden on the human

operator.

These goals resulted in a relatively sophisticated experimental system, of which adaptive control is only

a small part.

Because of the system complexity, modularity in both hardware and software design became a
necessity.

The Multi-Manipulator Free-Flying Space Robot is self-contained, containing its own pressurized
gas system for floatation and propulsion. It incorporates a pair of arms for performing cooperative ma-

nipulation. The robot contains NiCad rechargeable batteries for use in free-flying experiments. Power

97
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electronics can distribute electrical power utilizing either the batteries or external power. Additional
analog electronics handle sensing and actuation, as well as on-board battery recharging. The robot
also has a camera for on-board vision sensing. The on-board computer system provides the “brains”
for the space robot and is the core of the controls system; the computers also provide on-board vision
processing. Analog-to-Digital (A/D), and Digital-to-Analog (D/A), and Digital Input/Output (DIO)
boards furnish the interface between the computers and the sensors and actuators. A wireless Ethernet

module allows communication with the user and off-board computers!.

Software modularity and the need to provide a high-level user-interface resulted in a hierarchical
control approach. At the top level is a graphical user interface that allows the operator to view the
robot and payloads and to direct robot actions via simple mouse motions and simple commands such as
“move”, “capture”, or “release.” At the heart of the control system is a strategic controller that processes the
user input and schedules the necessary control mode changes based upon user and sensor inputs. The
adaptive controller sits at a lower level, along with the trajectory generators. These too are modularized
such that different controllers, trajectory generators, Jacobian calculations, etc., may be swapped in
dynamically at the request of the strategic controller or the user. At the lowest level are the sensor and

actuator nonlinear-compensation calculations.

8.1 Hardware Architecture

The Multi-Manipulator Free-Flying Space Robot is a completely self-contained and modularly designed
robot capable of fully autonomous operation. The space robot floats on a cushion of air atop a 9 foot
by 12 foot granite surface plate that is flat to within 0.001 inch between any two points on its surface.
This results in extremely low friction, providing an accurate representation of the drag-free conditions
of space in two dimensions. The robot operates in a plane perpendicular to the gravitational force; thus
gravity is not a factor.

The space robot carries on board a pair of manipulators, a pressurize gas system for propulsion,
batteries and electrical power systems, a complete set of sensors include a camera for vision sensing,
a computer system, and a high-speed wireless communications system. Figure 8.1 shows a picture of

the space robot?. The space robot is functionally separated into three layers. At the bottom is the

! Although high-speed communication is not required for user commands during operation, it greatly enhances controller
development capabilities.
2The space robot was designed mainly by Marc Ullman and Ross Koningstein of the ARL. The vision system hardware—the
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pressurized gas system. The spherical tanks, capable of holding 3000psi of compressed air, provides the
gas supply for both flotation and propulsion. The middle layer contains the batteries, battery-charging
system, power electronics, and analog electronics for the sensors. The top layer contains the computer
system and digital electronics. It also holds the wireless Ethernet module. At the very top is the vision
camera, sitting on its boom, that provides local sensing of the manipulator end effectors and of the
payload objects. Finally, the pair of planar manipulators reaches out from the front of the robot.

The base of the space robot measures 500mm in diameter and, neglecting the camera boom, and
800mm in height. It has 65kg in mass and a moment of inertia about its center of mass of 3.2kg-m?.
The maximum reach of each arm is 600mm, and the mass of each arm is 2.3kg. Detailed mass

distribution can be found in the initialization files in Appendix E.

8.1.1 Actuators

Free-flying base actuation is provided through eight gas-jet thrusters. The thrusters are mounted
between the two bottom layers on the corners of a square whose diagonal is a diameter of the base (see
Figure 8.2). The thrusters may be fired in combinations to produce translation and rotational motion.
An optimal bang-off-bang thrust-mapping algorithm for the on-off thrusters is used to approximate
linear control [43]. The pressure for the thrusters is regulated nominally at 100psi, and each thruster
supplies 1N of force. Therefore, the maximum force that can be applied in any one direction is 2N,
and the maximum torque is IN-m.

The manipulators are in a SCARA configuration, each with two degrees of freedom. The actuators
are brushless DC limited-angle torquers® mounted at the robot base to minimize link inertias and to
prevent the center of mass of the robot from shifting away from the center of the air bearing. Each
shoulder is connected directly to its motor, and each elbow is connected to its motor through a cable
drive to eliminate backlash. Compensation for the nonlinear torque curve versus angular position
is done in software®. The maximum torque from each shoulder motor is about 0.8N-m, and the
maximum torque from each elbow motor is around 0.5N-m.

Each end effector is a pneumatically-actuated “gripper” that moves in the vertical direction on linear

Point Grabber II—is designed and built by the author.

3The motors are manufactured by Aeroflex. Model V40Y-6H is used for the shoulders and model V40Y-5H is used at the
elbows.

“The torque curve is modelled as a fourth-order polynomial constrained to have only one inflection point at the motor
angle with maximum torque output.
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Figure 8.1: Multi-Manipulator Free-Flying Space Robot

The Multi-Manipulator Free-Flying Space Robot is a fully self-contained autonomous robot
with on-board fuel, power, computers, vision, and wireless communications systems.
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Figure 8.2: Thruster Arrangement

The space robot carries eight gas jet thrusters, mounted on the four corners of a square in the base
of the robot. Two thrusters at each face of the square can provide pure translational motion, and
when fired in combination, the thrusters can supply both rotational and translational motions
simultaneously. The numbered pairs of thrusters provide positive and negative thrust along
the indicated line of action. An optimal bang-off-bang thrust mapping is used to approximate
linear control.

bearings. To grasp a payload object, the “grippers” are lowered into mating “gripper ports” in the
payload. A bearing at the tip of the gripper prevents the gripper from applying a torque on the object,

and an O-ring around the bearing ensures a snug fit in the gripper ports.

8.1.2 Sensors

The manipulator-joint-angle sensors are analog RVDT'’s (rotational variable differential transformers)
mounted on the motor shafts. An additional analog filter provides band-limited pseudo-angular
rate. The RVDT's are Pickering model 23501-0, each having a range of 150 degrees. The RVDT
position signals are additionally passed through a third-order polynomial in software to compensate for
nonlinearity.

Other sensors provide information on battery voltage and gas tank pressure. These are used
during initialization to determine the health of the space robot system. They can also be monitored
continuously during operation to determine when the robot should return to its dock for recharging

and refueling.
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8.1.3 Vision Subsystem

The position sensors for the space robot and payload objects are vision-based. A vision system consists
of a Pulnix 440S CCD camera, a Point Grabber II vision-processing board>, and a computer board to
process the vision data and to run the VisionServer software®. The VisionServer utilizes bright targets
to identify and track named objects. Three targets on each object are sufficient for identification and
for providing position and orientation information in two dimensions’. Objects of interest are marked
by bright targets using either infrared LED’s or highly-reflective discs. The PointGrabber locates bright
pixels in the camera’s field of view and stores their positions. Postprocessing assembles the bright pixels

into groups corresponding to the targets before passing the information to the VisionServer.

The combination of vision hardware and software can provide at 60Hz resolution of better than
a 1/20% of a pixel; for a field of view of two meters, this resolution translates to about 0.25mm.
Third-order polynomials correct for the wide-angle-lens distortions to provide good accuracy over the

entire field of view.

Two vision systems provide the global positioning information over the entire surface of the granite
surface plate®. The cameras are mounted above the table, and two off-board computers perform the
vision processing. The global position and velocity information is sent to the space robot via the wireless
Ethernet link. The space robot base and each payload object are equipped with a triad of infrared LED’s,
mounted in a unique pattern. These patterns are registered with the VisionServers, allowing them to

identify and track each body.

The space robot also contains an on-board vision system for local sensing. Because the field of view
is smaller, this vision system provides much higher resolution. The local vision system also enables
high-speed local feedback, and is not affected by possible communication delays and drop-outs from
global positioning systems. Each manipulator end effector also carries an infrared LED, allowing the

on-board vision system to track the endpoints for endpoint control®.

5See Appendix B for more details on the Point Grabber II.

The VisionServer software was developed by Stanley Schneider at ARL.

"Ongoing research at ARL is investigating the use of five targets per object for acquiring the position and orientation in
full three dimensions.

$This “surrogate” global positioning system most likely will be replaced in space by some combination of inertial navigation
system and GPS receivers.

*Endpoint sensing is of course absolutely essential for capruring payloads, because the controller must match the positions
and velocities of the end effectors with those of the gripper ports on the payload.
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8.2 Electrical Subsystem

Electrical power is needed to operate the manipulators, the computers, and communications. A fully
self-contained power subsystem, all the analog and digital electronics, and the computer systems for

control are contained on board the space robot.

8.2.1 Analog Electronics

Analog circuitry is needed to supply electrical power to the robot system, and to process the signals
from analog sensors.

On-board rechargeable NiCad batteries provide electrical power to the the space robot when it is
free-flying. The batteries can supply £12VDC at up to 15 Amps. Connecting external power when
the space robot is docked also provides electrical power and simultancously recharges the batteries.
Off-board charging is available as well, and the battery packs can be replaced while the space robot is
“live”. The barteries may be engaged and disengaged via manual toggle switches or through computer

control. Figure 8.3 shows a simple schematic of the analog electronics subsystem.

Battery Battery
I I
Charger Charger 15V 12V
I I
Ext. PCU 8V +15V
Pwr
I
I Main Power Bus Regulated Power
Motor Safety ) Sensor
Drivers Switch RVDT's| | ‘MUX

Figure 8.3: Analog Electronics Subsystem

The motor drivers use the raw, unregulated, power from the electrical bus. Power converter units
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provide regulated power at £5V to the computer and digital electronics, 12V and +15V to the analog
clectronics subsystem, and +8V to the wireless Ethernet module.

The analog electronics subsystem contains the main power control unit (PCU), battery chargers,
safety disconnect circuitry, sensor electronics, and motor drivers. The PCU contains the master power
switch and the battery engaging switches!®. It is the main power-distribution center, allowing any
combination of barteries and external power to drive the power bus. The barttery-charging circuits
provide three charge rates and include automatic switching into trickle charge as the batteries reach
their maximum voltage. The thrusters and arm motors are enabled through the safety disconnect switch.
In addition to the manual enable switch, the controller must enable the switch explicitly during every
sample period; otherwise, the safety switch kicks in to disconnect power to the motors and thruster
relays. This effectively kills power to all actuators if the control system fails.

The sensor electronics contain the excitation circuitry and filtering for the RVDT’s used for
manipulator-joint-angle sensing. It also supplies power to the infrared LED’s at the end effectors.
A multiplexer board takes sensor readings from the battery voltages, gas tank pressure, and the regulated

pressure. Finally, the motor drivers supply current to the arm motors.

8.2.2 Computer Subsystem

The real-time computer systems used in ARL are based on the VMEbus. The VMEbus is widely
supported in industry with both hardware and software products. Using standardized products shortens
development time and ensures robust, well-debugged computer components. Figure 8.4 show a simple
schematic of the computer system.

The main on-board computer is a Motorola MV167 single board computer containing a 25MHz
MC68040 processor. This computer handles all the sask-space adaptive control calculations, high-level
strategic control, trajectory calculations, path planning, sensor and actuator signal conditioning, and
nonlinear compensation of sensor and actuator signals. Another computer, the Motorola MV133-
1 with a 16.67MHz MCG8020, performs all the calculations for the on-board vision system. Two
additional off-board computers, Motorola MV147 20MHz MCG8030 processor boards, handle the
global vision system calculations. The on-board computer communicates with each other via the

VMEbus backplane, and communication with the off-board computers utilizes the wireless Echernet.

'9The barteries may be engaged manually or through computer control. The switches automatically disengage when the
batteries are removed.
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Figure 8.4: Computer Subsystem

Each of the vision-processing computers communicate with a Point Grabber II board.

The wireless Ethernet is the Motorola ALTAIR system. It consists of a Command Module and
multiple User Modules. Each module appears as a “node” on the Ethernet, and communicate with each
other at 19GHz microwave frequencies with an effective throughput of over 3Mbits/sec. Each module
contains a six-sector antenna, and each continually monitors all signal paths to determine the best signal
and to reject multipath signals, resulting in a very robust Ethernet connection in the laboratory setting.
The Command Module is directly connected to the laboratory network, and a User Module is placed
on the space robot. Additional User Modules are placed on other space robot experiments in the same

laboratory[10].

The Xycom XVMES90 16 differential channel 12-bit Analog-to-Digital (A/D) and the Xycom
XVMES595 4 channel 12 bit Digital-to-Analog (D/A) boards translate sensor input and actuator output
to and from digital format used by the computer. A Xycom XVME290 digital input/output board
furnishes a user-settable clock that is used for the sample clock. It also operates the on-off thrusters,
the grippers, and the sensor multiplexers so the computer may monitor the battery voltages, gas tank

pressure, and regulated pressure.
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A SUN workstation completes hardware requirements for the space robot experiment. The work-
station is the software development center for the space robot. All the run-time code is written and
compiled on the workstation before sending it to the real-time computers. The workstation also runs
a graphical user interface for interacting with the space robot. The workstation additionally is used for
data collection and analyses. Because the space robot is hooked up to the Ethernet, any workstation—or
multiple workstations—may be used for these purpose.

8.3 Software Architecture

The software architecture is developed to enable the user to interact with the space robot at a high task
level, such as directing the robot to chase down and capture a free-flying object with a click of a button.
The software is divided into three major areas; the graphical user interface, the strategic controller,
and the dynamic controller. The graphical user interface runs on the workstations and communicates
with the real-time computer systems to acquire position and orientation information for display and
to send commands to the space robot. The strategic controller and the dynamic controller both run
on the main real-time computer on the space robot. The strategic controller takes user inputs and
schedules the necessary controller mode changes to carry out the task; the mode changes may occur at
set time intervals or upon satisfying some conditions based on sensor inputs. For example, when the
end effectors have been tracking the payload object grip ports to within an error tolerance, the grippers
are engaged, and the control switches from end-point control to object control. The dynamic controller
includes all the inverse-dynamics, adaptive update, Jacobian, and trajectory calculations. Both the
strategic controller and the dynamic controller are implemented in the Controlshell real-time software

environment developed by Stanley Schneider of ARL!!([28, 34, 43].

8.3.1 Graphical User Interface

The graphical user interface (GU]) is the user’s link to the space robot. It displays the global position of
the robot and other objects of interest, and it allows the user to issue simple commands such as “move,”
“capture,” and “release.” This furnishes the desired high-level interface and disencumbers the operator

from the burden of performing continuous hand-in-glove-type teleoperations.

' Extensions to Controlshell have been implemented by Marc Ullman and the author,
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The graphical user interface communicates directly with the global-vision-system computers to
acquire the global positions of the robot and the payload objects for display. Since the user is not in the
high-speed feedback loop, the position display need not occur at high speed; high-performance control
is immune to communications delays'? and graphical display delays.

Figure 8.5 shows a portion of the graphical user interface. The space robot is indicated by the

circle with the cross; the arrow on the cross shows the robot’s heading. The payload object is similarly

Figure 8.5: Graphical User Interface

The space robot is represented by the circle with the cross-hairs. The payload object is
represented by the oval with cross-hairs that has the solid outline. The ghost image of the
object, represented by the dashed outline, shows the desired payload position. The command
buttons for “move,” “capture,” “release,” and “reset” appear in the top portion of the interface.
Adaptation may also be enabled through a command button. The manipulators are not shown,
because their configurations are not essential for the user.

displayed, but with an oval pattern. The solid outlines indicate the actual positions of the objects, while

a dotted outline—known as the “ghost image”—represents the desired position and orientation of the

12Communications delay is insignificant in the laboratory, but is an issue with real robots in space.
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object. The human operator moves this ghost image employing a computer mouse. When the ghost
image has been placed at the desired location and orientation, the operator clicks on the “move” button
to initiate the action. If the object being moved is the space robot, the control system will move the
robot base to the desired location using thrusters. If the object to be moved is the payload, the robot
will first capture the payload, then move the payload to the desired location. The operator may also
issue separate commands to “capture” and “move” the payload. Clicking on “release” directs the space
robot to release a payload, and clicking on “reset” resets the robot to a known state. Additionally, the
user may enable or disable adapration through the graphical user interface.

Because the user directly commands the position and orientation of the robot or payload, he need
not be concerned with the manipulator configurations; zask-space control and the strategic controller
manage all the detailed arm manipulation maneuvers. Accordingly, the manipulators are not displayed

in the user interface.

8.3.2 Strategic Controller

The strategic controller is the heart of the controls system and is implemented using state-table program-
ming [32, 43]. A “state” represents the current robot activity, and is typically one step in the execution
of a requested task. State transitions are triggered by external stimuli; each state determines which
stimuli to monitor. When a stimulus occurs, the strategic controller executes the associate transition
routine, and the result from the transition routine determines the next state.

A stimulus may be an edge-triggered or a persistent event. Examples of edge-triggered stimuli are the
expiration of a timer and the completion of a trajectory. These stimuli are active oniy for an instant. If
they happen when they are not being monitored by the current state, they are lost. Persistent stimuli
typically indicate status, such as the found/lost status of an object or the up/down status of the grippers.
By being persistent, a state need not be monitoring the stimulus when it changes; it also enables a state
to combine stimuli to form a new one, for example “GrippersDown” is formed by “RightGripperDown
AND LeftGripperDown.” If “RightGripperDown” and “LeftGripperDown” were both edge-triggered,
such a combination would not be possible without forming intermediate states.

State-table programming can be illustrated graphically by a state-transition graph, such as the
example in Figure 8.6. This example is a simplified state-transition graph for the capture of a payload.

The robot starts in the “Ready” state. When it receives the “Capture” command from the user interface,
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Figure 8.6: Sample State Transition Graph

This state transition graph example illustrates the basic components of the strategic controller
in performing a payload capture.

it executes the “StartCapture()” transition routine, and ends up in the “Starting Caprure” state. If the
object is not within the view of the local camera, but it has been found by the global positioning system,
the robot plots a trajectory for the robot base to rendezvous with the object and enters the “Moving
Base” state. If when the base trajectory has been completed but the object has not come into view yet,
the robot re-enters the “Starting Capture” state to plot a new base trajectory. When the object comes
into view of the local camera in either the “Starting Capture” or “Moving Base” state, the robot runs
the “CheckRange()” routine to determine if the object is within the reach of the arms; if out of range,
the robot enters the “Waiting” state; otherwise, it proceeds to the “Slewing to Object” state. While
in “Waiting”, the robot continually checks for the object to come into reach before transitioning to
“Slewing to Object.” R
“Slewing to Object” places the manipulators under endpoint control to command the arms to
follow a trajectory to intercept the grip ports on the pafload. When both grippers reach the grip

ports, “ArmsAtObject” triggers the transition to “Tracking”, where the grippers must track the payload
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grip ports for a set period of time to ensure that the grip tolerance is met. If at the end of the time
period—indicated by the “TrackTimer” stimulus—the tolerance is not met, the manipulators must
continue to track the grip port; otherwise, the robot lowers the grippers. When both grippers are
down, the robot employs object control!? to execute the “StopObject()” transition routine and enters
the “Manipulating” state. If the robot receives the “Release” command while “Manipulating”, it raises
the grippers and returns to the “Ready” state to await further commands.

Error handling is easily implemented with a state-table programming. In any state before the
payload has been grasped, an “ObjectLost” stimulus from the vision system can bring the robot into
an “Error” state'®, and eventually back to the “Ready” state. If, while manipulating the object,
the “GripToleranceExceeded” stimulus occurs—indicating that the robot may have lost grip on the
object—the robot may release the object and attempt to reacquire it.

Similar state transition graphs have been developed and implemented!’ for processing other user

commands to move the robot base, move the payload, and enable adaptive control.

8.3.3 Controlshell

Controlshell is a software framework developed by Stan Schneider at ARL that aids the development
of real-time control systems. Controlshell enables the user to develop a multiple-processor hierarchical
control system in a modular fashion. It directly supports state-table programming utilized by the strategic
controller. At the lower level, Controlshell incorporates user-defined components for performing any
number of control-system tasks ranging from acquiring sensor values to computing the #ask-space
control and adaptive update laws. Controlshell also allows definitions of complete configurations of
components—configurations that comprise all the components that pertain to a control mode. These
configurations may be swapped dynamically to effect control-mode changes under the direction of the
strategic controller or the user. Please see [34, 43, 28] for more details on Controlshell.

The task-space adaptive controller is implemented at this software level. Different Jacobian com-

ponents are defined to correspond with the different zask-space control objectives representing different

>Object control, endpoint control, and joint control are all implemented with the tsk-space adaptive controller.

“When the object is being grasped, the robot may infer the object location from its joint sensors and knowledge of the grip
port locations on the payload, so the vision system losing the object should not cause the robot to abort manipulation. The
grip is also monitored to determine if the robot is grasping the payload.

'>The state-transition tables were originally developed by Marc Ullman of ARL (43]. The author made modxﬁcauons and
added capabilities to handle adaptive control.
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control modes. Appropriate torque-mapping components are also defined. There is, however, only one
component for the inverse-dynamics and one for the adaptive update calculations.

As a side note, the real-time computers run the VxWorks real-time operating system from Wind
River Systems. In addition to providing facilities for real-time activities, the operating system supports
networked file systems, allowing each computer to download its run-time code directly from the

laboratory file systems via the high-speed Ethernet connections. Controlshell runs on top of VxWorks.

8.4 Payload Subsystems

Figure 8.7 depicts the two free-flying payload objects used to investigate the performance of the adaptive

controller. They possess inertia properties that differ by an order of magnitude. These differences are

Figure 8.7: Free-Flying Payload Objects

The free-flying payload objects have mass properties that differ by an order of magnitude, but
they appear identical to the vision system and the space robot, because the LED patterns and
grip port locations are identical.

enough to demonstrate significant deterioration in controller performance were adapration not used.
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Both payload objects float employing battery-operated aquarium pumps. Each top plate includes
three infra-red LED’s for identification and tracking by the vision systems. The parterns are identical
for both objects, such that the vision system and space robot cannot know which object the robot is to
capture and manipulate. The grip ports on both payloads also are located identically. The smaller object
is made of honey-combed aluminum, and its mass is 1.0kg and its moment of inertia is 0.007kg-m?.

The larger payload is made of solid stainless steel and masses 8.9kg; its moment of inertia is .1kg-m?.



Chapter 9

Implementation and Experimental Results

The new task-space adaptive controller was implemented on the Multi-Manipulator Free-Flying Space
Robot. This controller, coupled with the strategic controller described in Chapter 8, allows the
space robot to execute complicated control sequences—including the chase, capture, and placement of
free-flying objects—with adaptation available throughout all control-modes. This chapter documents
experimental results verifying the performance of the adaptive control for two of control modes, or

tasks. object control and endpoint control.

Payload adaptation offers the most dramatic results, since changing payloads causes step changes
in the system parameters; and the adaptive controller must respond quickly to these step changes
to maintain good performance. Experimental results of adaptation to two payloads with an order-
of-magnitude difference in inertial parameters is presented. They show the poor performance of a
nonadaptive controller when the controller is given the wrong set of payload inertial parameters. They
also show the improvement when adaptation is activated. The results suggest that adaptive control can
deliver performance equal to or even better than a nonadaptive controller using nominal payload inertial

parameters.

This chapter also shows the capability of the rask-space adaptive controller to adapt to robot
parameters. The inertial parameters of the right manipulator are set to zero, and endpoint control is
enabled. The results indicate that the adaptive controller can also adapt to large changes in the robot

parameters and thereby greatly reduce the endpoint trajectory errors.

113
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9.1 System Model

Figure 9.1 shows the schematic used to model the Multi-Manipulator Free-Flying Space Robot. The
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Figure 9.1: Multi-Manipulator Free-Flying Space Robot Schematic

The space robot consists of five rigid bodies. Each body i has mass m; and moment of
inertia I;. The center of mass of the base is offset from the geometric center of the base by
(Lcows Leoy)- The shoulder of each manipulator j is located at (L;z, L.y, ), measured from
the base center. The upper link of each manipulator j is Ljy long, and its center of mass is
located at (Ljyz, Lj1,), measured from the shoulder. The lower link of each manipulator j
is Lj3 long, and its center of mass is located at (Ljaz, Lj2y), measured from the elbow. The
base-relative coordinate system is fixed in the base frame and is centered in the base; the x-axis
is aligned with the unit-vector by, and the y-axis is aligned with the unit-vector b,.

space robot is a seven-degree-of-freedom system, consisting of five rigid bodies. The free-flying base
has three degrees of freedom—itwo in translation and one in rotation, and each manipulator link has

one rotational degree of freedom. The mutually perpendicular unit-vectors, by and by, are fixed in the
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robot-base frame. The base-relative coordinate system is fixed in the base, and its center coincides with

the center of the base; the body-fixed x-axis is aligned with by, and the y-axis is aligned with b;.

The payload object is a single rigid body, possessing three degrees of freedom. Figure 9.2 shows
the schematic used to model the payload. The space robot and the payload are combined to form a

complete system model used by the zask-space adaptive controller.

Figure 9.2: Payload Object Schematic
The payload is a single rigid body with three degrees of freedom. It has mass mop; and moment

of inertia I ;. The center of mass is located at (L7, L), measured from the geometric center
of the object. The grip ports are located at Ly and L g, along the center line. The body-relative

coordinate system is fixed in the payload, and the x- and y-axes are as indicated.

The robot may be modelled with sixteen (16) parameters, and the payload modelled with another
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four, giving the twenty-term system parameter vector!:

- -

mo+m) +ma+my + my
moLlepr + (M1 +ma) Lotz + (M3 +my) Leag
moLegy + (m) + ma Loy + {m3 +my Leay
milyg + maly
miLyyy
maLlyg
maLlyzy
myLaiz + maly
m3Lay
mgLlag
myLaay
moLly + (my +ma) L2 + (m3+me) L2+ 1o
m (L}u + Lfly) +mald + 1y
my (L}, + szy +1;
ms (Lgl, + Lg,u) +mgld + 1y
my (L + Ldy ) + 14

(9.1)

Moby
mobi Lz
Moby L;
mob; (L;..2 + L;z) + Iobj ]

Payload adaptation is demonstrated utilizing base-relative control. This is an important capability
for a free-flying robot, because local sensors can provide high-bandwidth, high-resolution sensing that
may not be available from global sensing systems. A typical manipulation task is to extract or insert
the payload from or into a mating part. It is important for the local sensing system to sense both the
payload and the mating “port” during these maneuvers.

To model this situation, a separate “port” object is placed in the field of view of the local vision
system, and the robot is directed to perform slews to, and regulate at positions fixed in the reference
frame of the “port”, as illustrated in Figure 9.3. Because the space robot base may move during the
slews, the “port” is 7ot fixed in the robot’s reference frame. With relatively low feedback on the space
robot base position and orientation, the base is free to move within a bounded area before the on-off
thrusters fire. This can save precious fuel when performing local manipulation.

Experimental results are shown for handling of the small and large payloads with and without
adaptation. Note that only the last four parameters need to be updated for payload adaptation.

Adaptation to robot parameters is demonstrated with endpoint control: the right manipulator
endpoint is commanded to follow trajectories in the robot-base reference frame. The inertial parameters

of the manipulator are set to zero to compare the performance with and without adapration, All

'The derivation is left to the reader.
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(9] a,

Figure 9.3: Payload Slews Relative to Mating “Port”

This schematic shows a typical slew that the space robot performs. The payload is directed to
follow a trajectory in the “port” reference frame, in the presence of robot base motions. The
cross-hairs in the robot base indicate that the robot base may move during the slew.

the parameters containing the manipulator inertial parameters—m,, my, Iy, and Jz—are adaptively

updated.

9.2 Adaptation to Small Payload

The experimental results for the control of the small payload is separated in four sections: nonadap-
tive control using nominal payload parameters, adaptive control starting with nominal parameters,

nonadaptive control starting with incorrect parameters, and adaptive control with incorrect parameters.

9.2.1 Nonadaptive Control with Nominal Payload Parameters

The results for the nonadaptive control using nominal payload parameters serve multiple purposes; it
represents a baseline controller to which the adaptive controller is compared, and it serves to introduce
the format of the data plots. The payload is commanded to follow back-and-forth slews, illustrated by

Figure 9.4. This time-lapsed “overhead view” of the system is plotted from actual experimental data.



118 Chapter 9. Implementation and Experimental Results

Robot Motion
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Figure 9.4: Robot Slew from Actual Data

This plot depicts a typical slew that the robot is commanded to follow. The “view” is taken
from inertial space. The robot base is under control, but the control gains are adjusted to allow
small base movements before the on-off thrusters fire; close inspection of the plot shows that
the base did rotate several degrees.

Figure 9.5 displays the plots for the actual and desired position and orientation of the payload in the
“port” reference frame. The lower right plot shows the Cartesian path that the payload followed during
the slews.  These time-histories show that the controller performed reasonably well in trajectory-
tracking. The steady-state offsets are caused by spring forces from tubing inside the manipulators.
Integral control reduces these errors, but it has been disabled to compare the performance of the basic

task-space controller with and without adaptation.
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Figure 9.5: Small-Payload Trajectories—Baseline Nonadaptive Control

The actual and desired payload trajectories measured in the “port™-fixed reference frame, which
is fixed in inertial space for the series of experiments presented here. The solid lines represent
the actual measured payload trajectories of the payload’s geometric center and the dashed lines
represent the desired trajectories. The Cartesian trajectories are in the top two plots, and its
accompanying orientation is in the lower left plot. The lower right plot shows the "X vs. Y~
trajectory, representing an “overhead” view of the path traced out by the center of the payload,
as seen from a reference frame fixed to the “port”. The oval icons at the ends of the slews show
the payload orientations at those locations, but the icons do not depict the actual payload—the
icons are much smaller than the actual payload.

9.2.2 Adaptive Control with Nominal Payload Parameters

This section presents results for enabling adaptive control when the payload parameters are at their

nominal values. Doing so allows comparisons of the adaptive controller performance and the baseline

nonadaptive controller under near ideal conditions. It also can show how the parameters will eventually
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converge.
Figure 9.6 demonstrates that adaptation does not deteriorate the trajectory-tracking performance

(compare with Figure 9.5).  The time-histories of the payload-parameter estimates are shown in
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Figure 9.6: Small-Payload Trajectories—Adaptive Control Starting with Nominal Values for Param-
cter Estimates

These actual and desired payload trajectories are measured in the “port™-fixed reference frame.
They show the results for the adaptive controller starting with the nominal payload parameter
estimates. The time-histories show no significant difference in performance when compared
to the baseline nonadaptive controller. The oval icons in the lower-right plot show the payload
orientation at those locations.

Figure 9.7.  The payload mass directly corresponds to the parameter 67 (see Equation (9.1)); the
center-of-mass locations and the moment of inertia may be solved using the last four parameters of 6.
The results show that the mass and center-of-mass estimates do hover around their nominal values; but

the moment of inertia has a larger relative variance around its nominal value. A possible explanation is
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Figure 9.7: Small-Payload Parameter Estimates—Adaptive Control Starting with Nominal Values for

Parameter Estimates
These plots show the time-histories of the parameter estimates when they are initially given the
nominal values, and then the payload is moved as in Figure 9.5 and Figure 9.6.

that the spring forces in the arms are masking the inertial effects of the payload, since the true moment

of inertia of the payload is small (.007kg-m?). Nevertheless, the sharp changes in moment-of-inertia

estimate do not affect the trajectory tracking performance.

9.2.3 Nonadaptive Control with Incorrect Payload Parameters

The real advantages of adaptive control are evinced when the controller is supplied incorrect parameter

estimates. This section presents results for the nonadaptive controller controlling the small payload

when given the payload parameters of the larger payload. Figure 9.8 shows the payload trajectories.
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Because the controller believes the payload to be an order of magnitude more massive than it is, the
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Figure 9.8: Small-Payload Trajectories—Nonadaptive Control Starting with Incorrect Values for
Parameter Estimates

The actual and desired payload trajectories, measured in the “port”fixed reference frame. They

show the results for the nonadaptive controller actually controlling the smaller payload, but

starting with the larger-payload values for its parameters. The time history shows thar this is

an unacceptable controller (it skirts instability).

controller requests too much actuator effort to initiate each slew. The plots demonstrate this by showing
that actual trajectories lead the desired trajectories at the start of each slew. The feedback portion of the
controller finally dominates toward the end of each slew to slow the payload, but causes large reversals
in direction. This is not an acceptable controller. Many times this particular situation leads to violent

instability.
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9.2.4 Adaptive Control with Incorrect Payload Parameters

This time, adaptive control is enabled, with initial payload parameters set to that of the larger payload.

Figure 9.9 shows a dramatic improvement in performance. The adaptive control updates the parameters
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Figure 9.9: Small-Payload Trajectories—Adaptive Control Starting with Incorrect Values for Param-
eter Estimates
The actual and desired payload trajectories, measured in the “port™fixed reference frame, show
the results for the adaptive controller actually controlling the smaller payload, but starting with
the larger-payload values for its parameters. The adaptive control adapts fast enough to prevent
significant overshoot by the end of the first slew; and effectively recovers the baseline controller
performance quality by the second and third slews (compare with Figure 9.8).

quickly enough to prevent significant overshoot by the end of the first slew. By the second and third
slews, the controller performance rivals that of the baseline nonadaptive controller of Figure 9.5.

Figure 9.10 displays the time-histories of the parameter estimates. ~ These plots show the rapid
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Figure 9.10: Small-Payload Parameter Estimates—Adaptive Control Starting with Incorrect Values
for Parameter Estimates
These plots show the time histories of the parameter estimates when they are initially set to the

parameters of the larger payload.

adapration of the payload parameters. The mass and moment-of-inertia estimates converged rapidly
toward their true values. The center-of-mass estimates, however, approached a location about 6mm
from the nominal location. This demonstrates once again that, lacking a sufficiently exciting trajectory,

trajectory-tracking convergence does not imply parameter convergence.

9.2.5 Small-Payload Control Summary

To summarize the results for control of the small payload, Figure 9.11 shows the trajectory-tracking

errors of the baseline controller, the adaptive controller starting with the incorrect parameters, and
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the nonadaptive controller utilizing the incorrect parameters.
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Figure 9.11: Small-Payload Trajectory-Tracking Errors

These plots show the time-histories of the trajectory-tracking errors of three controllers. The
adaptive controller already performs much better than the nonadaptive controller on the first
slew; and as well as the baseline controller—which is using the nominal parameters—after the

first slew.

controller performed better than the nonadaptive controller, even though they started with the same

set of incorrect payload parameters. By the second and third slews, the adaptive controller performs as

well as the baseline controller.
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9.3 Adaptation to Large Payload

Adaptation to the large payload duplicates the experiment in Section 9.2 using the larger payload. The
first two show the results of the nonadaptive and adaptive controller starting with the nominal payload
parameters (Figures 9.12 and 9.15). The nonadaptive controller represents the baseline controller. The
last two sections show the two controllers starting with the smaller payload parameters (Figures 9.17

and 9.18).

9.3.1 Nonadaptive Controller with Nominal Payload Parameters

This section presents the baseline nonadaptive controller utilizing the nominal set of payload parameters.
The same back-and-forth slews are performed. Figure 9.12 shows the time-histories of the actual and
desired trajectories.  The plots indicate that even the baseline controller exhibits some overshoot
characteristics. The adaptive control analysis in the next section shows that the spring forces? in the
manipulators are not likely candidates for causing the overshoots. Actuator saturation, however, is a
likely culprit, as Figures 9.13 and 9.14 show.  The top right plot in Figure 9.13 shows that the right
elbow torque barely reaches saturation during the second half of each slew. The base force? in the X
direction also saturates during each slew. Actuator saturation prevents the robot from providing enough

actuation to slow the payload sufficiently at the end of each slew and causes the trajectory overshoots.

*The spring effects are caused by electrical and pneumatic conduits inside the manipulators.
*The base forces and torques in the plots correspond to requested values from the controller. The actual forces and torques
are supplied by the on-off thrusters, utilizing optimal bang-off-bang thruster mappings.
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Figure 9.12: Large-Payload Trajectories—Baseline Nonadaptive Control

The actual and desired payload trajectories, measured in the “port™fixed reference frame,
show the results for the baseline nonadaptive controller using the nominal values for payload
parameters. The plots show that even the baseline controller has some overshoot.
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Figure 9.13: Requested Motor Torques—Baseline Nonadaptive Control

These are the motor torques requested by the controller. The elbow motors saturate at .5N-m,
so the requested payload trajectory is right on the border of what the space robot can deliver.

The top right plot shows that the right elbow motor almost reaches saturation during each
slew.
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Figure 9.14: Requested Base Forces and Torque—Baseline Nonadaptive Control

These plots show the base forces and torques requested by the controller. The actual delivered
forces and torques are derived from the optimal bang-off-bang thruster mappings. The base
force in the X direction also saturates. The maximum torque capability is IN-m, so the base
torque, as shown in the bottom plot, is still far from saturating.

18 20
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9.3.2 Adaptive Controller with Nominal Payload Parameters

This section shows once again that the adaptive controller, when starting with the nominal set of
parameters, does not deteriorate the controller performance. In fact, the adaptive controller improves

the orientation control, as Figure 9.15 shows.  Figure 9.16 shows that the adaptive controller is
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Figure 9.15: Large-Payload Trajectories—Adaptive Control Starting with Nominal Valued for Pa-
rameter Estimates
The actual and desired payload trajectories, measured in the “port™fixed reference frame, show
the results for the baseline adaptive controller starting with the nominal payload parameters.
The orientation-tracking performance seems to improve over that of the baseline controller by
decreasing the overshoot.

increasing the moment of inertia of the payload to decrease the orientation overshoot.  That the
moment-of-inertia estimate is monotonically increasing seems to rule out spring forces as the cause

of the overshoots in the baseline controller. Spring forces will tend to aid the controller in certain
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Figure 9.16: Large-Payload Parameter Estimates—Adaptive Control Starting with Nominal Values
for Parameter Estimates

The time histories of the payload parameter estimates show that the adaptive controller is
increasing the moment-of-inertia estimate to improve the orientation-tracking performance.

configurations, while hindering the controller in other configurations; this will be exhibited in the
parameter estimate time-histories by increases in the estimate for one slew, then decreases for the slew

in the opposite direction. This is not what the moment-of-inertia estimate in Figure 9.16 shows.

Motor saturation, therefore, is the probable cause of the overshoots, and the adaptive controller
compensates for it by increasing the inertia of the payload parameters estimates to improve the trajectory-

tracking performance.
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9.3.3 Nonadaptive Controller with Incorrect Payload Parameters

The nonadaptive controller given the smaller payload parameters performs as poorly as the nonadaptive
controller controlling the small payload using the larger payload parameters. Figure 9.17 shows the

time-histories of the actual and desired payload position. This control is also unacceptable.
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Figure 9.17: Large-Payload Trajectories—Nonadaptive Control Starting with Incorrect Values for
Parameter Estimates

The actual and desired payload trajectories, measured in the “port™-fixed reference frame, show
the results for the baseline nonadaptive controller actually controlling the larger payload, but
using the smaller-payload values for its parameters.

9.3.4 Adaptive Controller with Incorrect Payload Parameters

Enabling the adaptive control improves controller performance, as Figure 9.18 shows. The improve-
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Figure 9.18: Large-Payload Trajectories—Adaptive Control Starting with Incorrect Values for Pa-
rameter Estimates
The actual and desired payload trajectories, measured in the “port™fixed reference frame,
show the results for the adaptive controller controlling the large payload, but starting with
the smaller-payload values for its parameters. The plots show that although the performance
improves over that of the nonadaptive controller, the improvement is not as rapid as that for
the adaptive control for the small payload

ment, however is not as dramatic as that of the adaptation for the smaller payload (Figures 9.9). The
trajectory-tracking errors during the slews are not large enough to make the parameters converge quickly,
as Figure 9.19 illustrates. These time-histories show that the parameters have not yet converged after
three slews. Higher adaptive update gains will improve the adaptation rate, but may deteriorate the
performance when controlling the smaller payload; for example, a mass estimate change of 1kg represent

10 percent of the larger payload mass, but represents 100 percent of the smaller payload mass. Thus a
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Figure 9.19: Large-Payload Parameter Estimates—Adaptive Control Starting with Incorrect Values
for Parameter Estimates

These plots show the time histories of the parameter estimates when they are initially set to the
parameters of the smaller payload.

more rapid adapration rate for the large payload may be too high for the small payload.

Figure 9.20 shows the trajectory-tracking performance after the parameters have essentially con-
verged. The plot shows that it is besrer than that of the baseline nonadaptive controller (see Figure 9.12).
Figure 9.21 presents the converged set of payload parameter estimates. They show that the estimated
moment of inertia converges to higher values than the nominal values. The adapfivc controller, there-
fore, can improve the performance over that of the baseline controller by adjusting the parameters away
from their nominal values. The adaptive controller may be compensating for some unmodelled effects

to improve the trajectory-tracking errors.
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Figure 9.20: Large-Payload Trajectories—Adaptive Control with Converged Parameter Estimates

The actual and desired payload trajectories, measured in the “port”fixed reference frame, show
the results for the adaptive controller after the payload parameter estimates have converged.
The x and y trajectory tracking performance is similar to the baseline nonadaptive controller
(Figure 9.12), but the orientation tracking is berter, showing less overshoot.

9.3.5 Large-Payload Control Summary

Figure 9.22 compares the trajectory errors of the adaptive and nonadaptive controllers starting with the
incorrect payload parameters.  The time histories show that the adaptive controller performance is

gradually improving over that of the nonadaptive controller.
Figure 9.23 summarizes the overall performance for control of the large payload. It shows the

trajectory-tracking errors of the baseline controller, the adaptive controller with converged parameters,

and the nonadaptive controller utilizing the incorrect parameters. These plots demonstrate that the
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Figure 9.21: Large-Payload Parameter Estimates—Adaptive Control with Converged Parameter
Estimates
These plots show the time histories of the parameter estimates after they have essentially

converged.

adaptive controller performed better than the baseline controller, after the parameters have converged.
The nonadaptive controller using the small payload parameters is unacceptable for controlling the large

payload.
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Figure 9.22: Large-Payload Trajectory-Tracking Errors—Adaptive vs. Nonadaptive

These plots show the time histories of the trajectory-tracking errors of adaptive and nonadaptive
controllers starting with the incorrect payload parameter estimates. The adaptive controller
shows gradual performance improvement over the nonadaptive controller.

20
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Figure 9.23: Large-Payload Trajectory-Tracking Errors—Overall Performances

These plots show the time histories of the trajectory-tracking errors of three controllers while
controlling the large payload. The adaptive controller—after the parameters have converged—
performs slightly better than the baseline nonadaptive controller using the nominal payload
parameters. The performance of the nonadaptive controller using the parameters for the smaller
payload is unacceptable.
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9.4 Adaptation to Manipulator Parameters

This section presents results of adaptation to manipulator parameters utilizing the same task-space
adaptive control framework. The results show the effectiveness of the adaptive controller in reducing
trajectory-tracking errors. Endpoint control is utilized for this experiment. The baseline controller is
presented first with nominal arm parameters. The inertial parameters of the right arm are then set 1o

zero and results of endpoint slews are shown without and with adaptation.

9.4.1 Nonadaptive Controller with Nominal Arm Parameters

Figure 9.24 shows the endpoint trajectories of the baseline nonadaptive control using the nominal arm
parameters. The steady-state offset are once again caused by the spring forces from wiring inside the

manipulator. Integral control is disabled to show the performance of the baseline zask-space controller®.

9.4.2 Nonadaptive Controller with Incorrect Arm Parameters

Setting to zero the estimates for the inertial parameters of the right arm—m;, ma, I), and ,—
effectively disables the inverse-dynamics feed-forward portion of the ask-space controller. Figure 9.25
shows the controller performance. The trajectory-following in the X direction is quite good, but there
is noticeable overshoot in the Y direction. The bottom “X vs. Y” plot shows more clearly the path of

the endpoint and the deterioration in performance.

*Integral control is enabled during actual operation to enable the capture of the free-flying object.
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Figure 9.24: Endpoint Position—Baseline Nonadaptive Control

These plots show the actual and desired endpoint trajectories in inertial space of the baseline
nonadaptive controller using nominal arm parameters. The bottom plot shows the X vs. Y
plot, representing an “overhead” view of the path traced out by the endpoint in inertial space.
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Figure 9.25: Endpoint Position—Nonadaptive Control Starting with Incorrect Values for Parameter
Estimates
These plots show the actual and desired endpoint trajectories in inertial space of the nonadaptive
controller using zeto as estimates for the arm inertial parameters.
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9.4.3 Adaptive Controller with Incorrect Arm Parameters

Enabling adaptive control improves the controller performance, as Figure 9.26 illustrates. Comparing
with the baseline controller performance of Figure 9.24 shows that adaptive control performance is as

good as the baseline controller by the third slew.  Figure 9.27, however, shows that the parameters
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Figure 9.26: Endpoint Position—Adaptive Control Starting with Incorrect Values for Parameter
Estimates
These plots show the actual and desired endpoint trajectories in inertial space of the adaptive
controller starting with zero as estimates for the arm inertial parameters.

did not converge toward their nominal values. The PD controller did reasonably well in tracking the
back-and-forth endpoint slews, so there was not enough tracking errors for the adaptive controller to
allow good parameter convergence. Endpoint motions with more excitation is necessary to make the

parameters converge. Nevertheless, the task-space adaptive controller provides good trajectory-tracking
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performance.

9.5 Summary

The new task-space adaptive controller can provide both payload adaptation and manipulator adaptation
to improve trajectory following. For the payload, where there are few parameters, the simple trajectories
provide sufficient excitation to allow identification of the payload parameters to converge close to their
correct values. In addition, an “incorrect” set of parameters can actually improve the trajectory-tracking
performance by compensating for unmodelled effects’. The adaptive controller also improves endpoint-
tracking errors; but there is not enough excitation to make identification of all the parameters containing

the arm parameters converge.

3Uhlik [42) demonstrated a different aspect of this by showing that the use of an “incorrect” set of parameters for the robot

manipulator can improve the identification of the payload; but that these “incorrect” manipulator parameters cannot, however,
be used for stable high-performance control.
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Figure 9.27: Parameter Estimates—Adaptive Control Starting with Incorrect Values for Parameter
Estimates

These plots show the time histories of the parameters for the adaptive controller when m,, ma,

1, and I, are initially set to zero. There is obviously not enough excitation in the trajectory to

effect parameter convergence.
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Conclusions

This chapter summarizes the results of this research and draws some conclusions. It also describes some

continuing research, and suggests possible future extensions.

10.1 Summary

This dissertation constitutes the theoretical development of a new general adaptive control framework
and the experimental demonstration of the effectiveness of the new concept. This research showed that
the resulting new adaptive controller maintains good stability, without sacrificing performance, in the
presence of unknown or changing parameters.

The new task-space adaptive control framework affords the free-flying space robot—a complex
system containing multiple, interacting manipulators—effective adaptive control in all control modes.
The adaptive control readily handles joint-level control in the same manner as cooperative object control,
needing only the appropriate Jacobian and torque mapping for the control mode.

The task-space adaptive control is a general algorithm for systems with rigid members. The
theoretical development does not restrict the system to be just a free-flying space robot with two
manipulators operating in two dimensions: A system of any number of fixed or free-flying robots
with any number of rigid, nonredundant manipulators in three-dimensions may take advantage of this
adaptive controller.

The system concatenation concept for control yields efficient, incremental generation of system models

for multiple, interacting systems. New manipulators added to the system are typically represented in
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the system models as additional block-diagonal matrices. The models existing before the addition are
unaffected. The block-diagonal system matrices also lend themselves well to parallel computing,

System concatenation also keeps the adaptable parameters of each subsystem separated when in-
corporated into the sask-space adaptive algorithm. This allows operators to maximize their intuition
and maximize the utility of 2 priori knowledge of the controlled system. Applying heavier adaptation
weighting on the parameters of a subsystem that are poorly known ensures a quicker convergence of the
adaptive algorithm. The separable parameters furnish an elegant method of weighting the parameter

subspaces for faster convergence without the need for swapping adaptive controllers.

The modularity of the rask-space adaptive controller means easy implementation and multiple-
control-mode support with minimal effort. The basic controller blocks and adaptive update modules
do not change when switching control modes. Only the Jacobian and torque mapping modules, which
typically involve easily derived kinematic relationships, need to change. Since the vector of adaptable
parameters also does not change with control modes, there are no “glitches” during control mode

switches.

The experimental results show that the new adaptive control achieves robustness toward plant
changes with little cost to performance. In fact, the trajectory-following plots indicate that the adaptive
controller performs bezter than the nominal controller, illustrating that the new adaptive control can

compensate strongly for the effects of mismodelled and unmodelled parts of the system!.

The system concasenation and task-space concepts, even without adapration, comprise an elegant
formulation of control of complex systems. They formulate multiple-manipulator control as a complete
system in a more “traditional” manner. This allows the well-known computed-torque or inverse-
dynamics analyses to be performed directly, without separating object control from manipulator control

into two distinct steps.

Perhaps the most significant contribution of the task-space adaptive control framework is that it #
a framework. A particular joint-space adaptive controller was extended to provide the adaptive portion
of the framework; but the framework does not require that particular adaptive scheme. Other adaptive
controllers initially designed for a single-manipulator robot may take advantage of this framework to

be extended to multiple, cooperative-manipulator control.

'The laboratory’s vision systems, which the author built early on, were essential to the success of these experiments.
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10.2 Continuing Research

Ongoing research at the Aerospace Robotics Laboratory (ARL) and Information Sciences Laboratory
(ISL) of Stanford University naturally complements the work presented in this thesis. One area is the
use of recursive algorithms to achieve even more efficient controller implementations. Another is in the

control of multiple, cooperating manipulators possessing kinematic redundancy.

The task-space adaptive control framework makes extensive use of Jacobian-like matrices to effect
control in the zask space. The algorithm requires both the Jacobian and its matrix inverse. As the system
complexity grows, these computations may become prohibitively expensive. Recursive implementation
of the inverse Jacobian have shown that computations can be greatly reduced even for a moderately

complex system.

Additionally, the system concatenation concept can be carried to the limit, where each link of
a manipulator represents a subsystem. At this extreme, the inverse dynamics control can also be
implemented recursively. Coupled with recursive Jacobian implementation, these order-N algorithms
provide very computationally efficient controllers. Research is progressing on extending these algorithms

to the control of multiple cooperating-manipulator robots.

A redundant manipulator possesses more degrees of freedom than are needed for definitive control.
Additional degrees of freedom afford the manipulator the ability to maneuver around obstacles, to
save fuel, and to avoid kinematic singularity, without affecting the primary control objectives. As one
example of its usefulness, this ability allows a manipulator to work in a cluttered environment with
relative ease. The challenge in controlling a redundant manipulator involves developing an endpoint
controller that will “naturally” avoid obstacles and singularities without operator intervention. Many
researchers have already developed redundant controllers for single manipulators. Ongoing research at
ARL is planned to formulate control for multiple, cooperating, redundant manipulators, but to do so

in a manner that is easily extensible as more manipulators are added.

ARL is also collaborating with the Stanford Computer Science Robotics Laboratory (CSRL) to merge
sophisticated path-planning algorithms with real-world robotic systems. The initial experiments are
performed utilizing fixed-base robots, and the algorithms will be transferred to the Multiple-Manipulator

Space Robot facility in the near future.
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10.3 Suggestions for Future Research

An obvious area of further research is to extend both the recursive algorithms and the multiple redundant-
manipulator control work to the realm of adaptive control. The combination of task-space adaptive
control, recursive algorithms, and redundant-manipulator control capabilities will form a very powerful
and useful control framework.

The rask-space adaptive control has been developed for manipulator systems composed of connected
rigid bodies. The applicability to systems possessing flexibility must be examined. Two types of flexibility
can exist in robots: drive flexibility and flexibility distributed along the links of a manipulator. The
former is quite common in industrial robots, and both are important in the Space Shurtle Remote
Manipulator System (RMS); the latter is expected to be a concern in space-based manipulators where
increased link flexibility is traded off for weight reduction. Since flexibility can severely limit manipulator
performance, controlling well when it is present is important. Major pioneering experimental research
has already been completed at ARL on the quick precise control of very flexible manipulator arms and
on manipulators with flexible joint-drive systems [36, 31, 42].

Although the rask-space adaptive control does not yet expressly address distributed flexibility, its
applicability is high for robots with joint flexibility. The successful application already completed of
local joint-torque control in cooperating manipulators with joint flexibility makes one quite optimistic
about the direct application of rask-space adaptive control: The joint-torque inner-loop control makes
the actuators behave as perfect torque sources, hiding the flexibility from the adaptive controller.
Experimentation, of course, must be conducted to determine whether further extensions must be made
to handle joint flexibility. Still further research is needed to determine the applicability of the task-space
adaptive control framework for distributed flexibility.

This dissertation demonstrates the task-space adaptive control framework with a specific adaptive
update algorithm. But since this framework does not limit the choice of the adaptive controller,
further valuable study can be made to compare and contrast the performance of other adaptive schemes,
including exponentially forgetting least squares (EFLS) algorithms that take advantage of past data
histories. To illustrate this, the current implementation has difficulties identifying the spring forces
caused by tubing and wiring in our laboratory space-robot manipulators. The EFLS algorithms may be
able to improve the parameter convergence for such terms.

Although the experimental results presented in this thesis indicate that the adaptive controller is
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capable of improving the performance by overcoming effects of unmodelled dynamics, further study
needs to be done to classify the explicit classes of unmodelled effects in which the rask-space adaptive
control remains effective.

The task-space adaptive controller can effectively adapt to an unknown payload, but only after
the robot has acquired it. The capture algorithm in the current hierarchical controller plots a straight
intercept trajectory, based on the object’s position and velocity. This strategy is valid for objects
significantly less massive than the robot, but may be fatal for very massive objects. Since the adaptive
controller will not get a chance to determine which is the case before the capture, more sophisticated
capture algorithms need to be developed. The intercept trajectory, for example, should parallel that of

the object—matching both position and velocity—to minimize the danger while capturing the object.
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Supporting Calculations for Lyapunov
Proof

A.1 Proof of Identities for Mp

The definition of M p is repeated here:
L)Y
Mp(q,y) £ —a(_q—)ye? (A.1)
1=] %
where e; € IR™ is the ith unit vector.
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Proof

M(q,q)y

Identity 3:
Mp(q,y)z = Mp(q,z)y (A.4)

Proof:

A.2 Representation for C

The representation for the matrix of Coriolis and centrifugal terms, C(q, q), in the equations of motion
for a robot with rigid links is not unique, although the vector, C(q, q)q, # uniquely specified. The

stability proof found in this thesis utilizes a particular representation:

Cla, &) = Mp(a, @) - ;Mb(a, @) (A3)

The following shows that this is a valid choice:

Cladd = (Molad-;MB@a))d

_ o 1(aM@y)\) .
(A2A3) (M(q’q)_§< aq ))q
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oy Clada
Please note, however, that:
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This representation for C(q, q) also does not satisfy the skew-symmetry property needed in the sliding-
mode adaptive controller [37]:

y" (M(q,q) - 2C(q, @)y=0 VyeR" (A7)

This property is not required for the Lyapunov proof in this dissertation. Additionally, note that this
representation for C(q, q), Equation (A.5), is useful only in the stability proof. It is not needed for

implementation of the control or adaptive update laws, which use the combination, C(q, ¢)q.

A.2.1 Example

To illustrate the different representations, use once again the planar two-link arm example in Figure 2.1.

The choice of C(q, q) utilized in Equation (2.5) is:

X —malil3sin(q2)d;  —malil3sin(q2) (41 + ¢2)
C((b q) = . . (A'B)
malil3 sin(g2) g 0

which satisfies the skew-symmetric property.

Using the representation defined by Equation (A.5) yields:

0 —myl1 13 sin(q2) (241 + ¢2)
C(Qv Q) = (A9)
mali 3 sin(gz) (61 — 142) 1malil3 sin(g2)ds

Using either representation for C(q, q), the following is true:

N —mal1 13 sin(q2) (241 + ¢2) 42
C(q,4)q = o (A.10)
maly 13 sin(g2)gf

showing that C(q, q)q is uniquely specified.
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A.3 Control and Adaptive Law Transformations

This section shows the equivalency of the control and adaptation laws developed for equations of motion
written in terms of §’s and those written in terms of generalized speeds.

The the control and adaptation laws derived for equations of motion in terms of generalized speeds

is repeated here as:
F = M(@u+C(qu)u+G&(@+Kvi+ WTKpG (A-11)
P B /T . ~ T~
Z] & I'Y" (q,uq4,uq,04) (u +cW q) (A.12)
where

F = WTr (A.13)

A.3.1 Control Law Equivalence

Given the transformation equations derived in Chapter 4,

F = WTr
M'(q) = W TM(qW-!
C(qu) = WTC(qWluyyw™! (A.14)

G = WTG(q)
Y'(quua)8 = W-TY(qW-'u W'y, W-'0)8

substitute them into Equation (A.11):
wTr = W'Tﬁ(q)W_’ﬁd + W“Té(q, W lug )W luy + W'Té(q)
+WITWTK'vii + W TKpq

W (M(a)da + €(a, 40)aa + G(a) + WTK'y WG + Kpg) (A15)

4.1,

-

.8)

Multiply both sides of Equation (A.15) by W7 yields the Bayard and Wen control law,
"'(;)IVI(Q)EM +C(q, q0)dq + G(q) + WTKy WG + Kpg

with a slightly different velocity gain matrix, Ky = WTK'y W.
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A.3.2 Adaptation Law Equivalence
Strictly speaking, the adaptation law in Equation (A.12) is derived from the following condition:
o@)é"“r-'é +8"YT(q, ug, ug, i) (@ + W) (A.16)
Substituting the transformation equations into Equation (A.16) gives:
0 = 8 TI'8+8 YT(qW ' uy, Wluy, W i)W (il + cWd)

~T_ 1% =T . . e - ~
= 0TI '0+0 Y'(q,q4 44, da) (q+cq)

-
Il

-I'YT(q,d4, 44, da) (ﬁ + cﬁ)

rY7(q,44,94,44) (4 + @) (A.17)

=

)
Il

=

since § = —B. Equation (A.17) i the Bayard and Wen adaptive update law.

This proves that the two sets of control and adaptive update laws are equivalent.

A.4 Torques to Endpoint Forces using Virtual Work

This section shows, using virtual work arguments, the familiar expression relating endpoint forces and
actuator torques:
T = JT(q)F¥? (A.18)
The work done by the manipulator actuators as they move through a virtual displacements at each
joint, éq, is:

W =77 6q (A.19)

The work delivered at the endpoint of the manipulator through a virtual displacement at the endpoint,

bx, is:
§W = Ft#” gx (A.20)
These must be equal, hence:
T — tipT
T 6q(A19A20)F ox (A.21)
As the virtual displacements go to zero,
ox
bx = —
x 8q6q (A.22)

= J(q)éq (A.23)
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Substituting Equation (A.23) into Equation (A.21) for §x gives:

T = tipT
T 6q(~21A23)F J(q) éq (A.24)

Transposing both sides of Equation (A.24) gives:

ar = 6q°J° (q)F

= + = J¥(qF"r (A.25)

Thus, showing the relationship in Equation (A.18).



Appendix B

Point Grabber II Vision System

This appendix includes the User's Manual for the Point Grabber II Vision system, resolution-testing
plots, the schematics, and the PALASM listings of the logic for the PALs (Programmable Array Logic)
used in the Point Grabber II board.

B.1 User’s Manual

The user’s manual start on the following page.

156
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PointGrabber Il
User’s Manual
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Introduction

Point Grabber II is a specialized single-board VMEbus-based vision processing unit that provides real-
time systems with high speed, high resolution vision information from CCD cameras. It is ideally suited
for applications in a robotics and control environment where high speed sampling is essential to achieve
high performance.

Coupled with non-interlaced CCD television cameras and RTI’s Visionserver software, Point Grabber I
can provide frame updates at 60 Hz with resolutions better than 1/40 of a pixel. Over a field of view of 2
meters square, that translates to a resolution of 0.2 mm square.

To decrease the computational burden on host computers, Point Grabber II locates, digitizes, and stores
only bright points in the field of view. Bright markers, such as LEDs, placed on objects of interest
allows appropriate software to determine the position and orientation of the objects from Point Grabber II
data. Unlike “Frame Grabbers”, Point Grabber II provides data that all correspond directly to markers,
eliminating the need for host computers to perform sophisticated scene analysis computations.
Additionally, each Point Grabber II board can process data from two cameras simultaneously.

System Requirements

. VMEDbus system
. Host CPU card
. Non-interlaced CCD camera capable of accepting external horizontal and vertical

synchronization signals
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RN T

Figure B.1: Point Grabber II Vision Board
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General Description

Point Grabber II detects, registers, and digitizes brightly illuminated targets from video signals generated
by up to two cameras. Either active infrared LEDs or passive high reflectance stickers reflecting light
from an incandescent source can provide the bright targets . Visible-cut, infrared-pass filters placed over
the camera lenses will reject ambient visible light . Independent programmable threshold voltages for
each camera video input determine the transition between bright and dark. The vision board “detects” a
bright target when the video input signal from either camera rises above its respective threshold voltage.

Point Grabber II tracks the current horizontal (X) position and vertical (Y) position of the video scan of
each camera. The video board can, therefore, register the position, measured in pixels, of the each bright
image. The X position is measured starting from the left-hand side of the field of view, and the Y
position is measured starting from the top of the field of view. By sending horizontal and vertical
synchronization signals (HSYNC and VSYNC, respectively) to the CCD cameras, and by utilizing the
phase-locked loops (PLL) in the cameras, Point Grabber II provides very stable tracking of the video
scan. This method also ensures that, if two cameras are used, the video scans of both cameras are in
strict synchronization.

Besides registering the position of bright pixels, 8-bit analog to digital (A/D) converters on the vision
board digitize the video signals corresponding to those pixels. The board stores the digitized values with
the position information. Vision processing software may use the digitized values to achieve the 1/40
pixel resolution. The dynamic range of Point Grabber II is user programmable. Point Grabber II
automatically sets the lower reference voltage of each A/D converter to the corresponding threshold
voltage for each camera. By programming the upper reference voltage to be the highest expected video
input voltage, one can maximize sensitivity.

Point Grabber II stores the vision information in four (4) First-In-First-Out (FIFO) registers. One FIFO
(X FIFO) records the X position, one (Y FIFO) records the Y position, and two (Z0 FIFO and Z1 FIFO)
record the digitized values representing pixel brightness as seen by each camera. The vision board keeps
all data in the FIFOs in strict synchronization. That is, for each bright pixel detected by one or both
cameras, Point Grabber II writes data to all FIFOs. If only one camera detects a bright pixel, the
digitized value stored for the other camera is zero. Additionally, the vision board writes an extra data set
to the FIFOs at the end of each video frame. This data set, or frame marker, allows Point Grabber II to
continue storing data for the next video frame while vision processing software is still reading data for
the current frame. The implication of Point Grabber II's storage scheme is that the vision processing
software also must perform FIFO reads in strict synchronization. That is, the FIFOs must be accessed an
equal number of times. In the event that synchronization is lost, the software may reset the FIFOs via a
hardware register.

Point Grabber II functions as a VMEDbus interrupter. With interrupts enabled, the vision board generates
interrupts at the end of every camera video frame—typically every 1/60 of a second. The interrupt level
and interrupt vector are user programmable.

Additional registers on Point Grabber II provide separate camera enables, empty/full status of each FIFO,
and board-level reset. Refer to the appropriate sections for more detailed descriptions of the location and
usage of the registers mentioned in this section.
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Installation

Address Jumpers

Point Grabber II can be configured to reside in any 256-byte segment in short I/O space, starting at hex
address OxFFFF0000 and ending at OXFFFFFFFF. The address jumpers, J1 through J8, are located near
the P1 connector. The jumpers represent bits 8 through 15 of the board address. With a jumper installed,
the corresponding bit is set to 0. The default configuration, with only J1 installed, makes the board
appear at the 256-byte segment starting at OxFFFFFEQO.

JumEr confi guration Bit value

installed (x) 0
not installed (o) 1
Jumper J8 J7 J6 J5 J4 J3 J2 J1
Address Bit 15 14 13 12 11 10 9
Default setting 0 0 0 0 0 0 0

Camera Synchronization Timing
No further timing configuration is required to support the Pulnix TM-440S camera.

Point Grabber II provides precise synchronization with its cameras by utilizing the phase-locked-loop
(PLL) circuitry found in many CCD cameras. The PLL locks on to the user configurable horizontal and
vertical synchronization signals supplied by Point Grabber II.

The camera specifications must be available before the synchronization timing can be configured. The
standard crystal oscillator (U17) provided with Point Grabber II has a frequency of 14.318 MHz. This
value must be twice the frequency of the pixel clock of the camera. From the camera specifications,
make a note of the required number of pixel clocks per horizontal line (horizontal count) and the number
horizontal lines per field (vertical count) produced in the non-interlaced mode. These numbers are
essential to the proper configuration of the vision board.

Use the six 4-position dip switches, S1 through S6, to configure the camera synchronization timing. The
left group of three switches (S1 through S3) represents the horizontal count, while the right group (5S4
through S6) represents the vertical count. Letting the ON position represent logical 1, and letting each
group of dip switches represent a 12-bit binary number, set the switches for the desired horizontal count
minus one and vertical count minus one, respectively.

For example, the default settings on Point Grabber II are for the Pulnix TM-440S camera, which requires
a horizontal count of 455 and a vertical count of 262. The resulting switches settings are:

Switch S1 S2 S3 S4 S5 S6
Setting (1=0ON, 0=0FF) 0001 1100 | 0110 { 0001 | 0000 | 0101
Decimal value 454 261
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Register Descriptions

The Point Grabber II address space occupies a 256-byte segment selected by the address jumpers (see the
Installation section). The default segment starts at hex address OxFFFFFEQOQ. The following register
descriptions will give the addresses of the registers in terms of an offset into the selected 256-byte
segment. Addresses not mentioned are unused.

FIFO Registers

Point Grabber I stores its vision image information in four (4) First-In-First-Out (FIFO) registers. Each
FIFO is 9 bits wide and 512 deep. To the VMEDbus, these FIFOs are read-only, 16-bit word registers.

The vision board stores the X and Y location of each bright pixel in the X and Y FIFOs, respectively. It
stores the digitized value of a bright pixel from the first camera (Camera 0) in the Z0 FIFO, and that of
the second camera (Camera 1) in the Z1 FIFO. Since all the FIFOs are written when a bright pixel is
detected in either or both cameras, the lower 8 bits of the Z0 and Z1 FIFOs will both be nonzero only if
both cameras detect bright targets simultaneously. If only one camera detects a bright target, the data in
the other Z FIFO will be zero. Any vision processing software must perform an equal number of reads
from each FIFO to ensure that the data from all FIFOs on each set of reads refer to the same event.

At the end of each video frame, Point Grabber II additionally stores a data set, called the frame marker,
into the FIFOs. By monitoring the FIFO data for the frame marker, vision processing software can easily
determine the end of a video frame, while allowing the vision board to continue storing vision data for
the next video frame. This scheme takes advantage of the “double-buffering” capability of the FIFOs,
and ensures that no vision information is lost while performing vision processing.

Because the FIFOs have finite depth, it is possible for them to become full. This will happen if too many
bright targets appear in the field of view, which may be caused by excessive illumination or inappropriate
threshold voltages. Similarly, it is possible for the FIFOs to be empty, which indicates that no data is
currently available. When used as a bus interrupter, empty FIFOs also indicate an error, since they
should contain at least a frame marker data set. Either of these conditions indicate error, and vision
processing software should check the status register (see below) before proceeding to read FIFO data.
The recommended action for empty/full error is to reset the FIFOs (see below).

X FIFO (R) (0xD0)
Bits 15-9 Bits 8-0
Unused X position + (511 - horizontal count)

The X FIFO is a read-only register located at offset 0xDO. It should be accessed via 16-bit word reads,
although only the lower 9 bits are significant. Each value obtained from the X FIFO is offset from the
true X field-of-view position by the quantity (511 - horizontal count), where “horizontal count” is the
total number of pixels per horizontal scan line. Consult the camera specifications for the correct
horizontal count value.

Y FIFO (R) (0xD2)
Bits 15-9 Bits 8-0
Unused Y position + (511 - vertical count)

The Y FIFO is a read-only register located at offset 0xD2. It should be accessed via 16-bit word reads,
although only the lower 9 bits are significant. Each value obtained from the Y FIFO is offset from the
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true Y field-of-view position by the quantity (511 - vertical count), where “vertical count” is the total
number of horizontal scan lines. Consult the camera specifications for the correct vertical count value.

Performing the above offset calculation places the coordinate (1, 1) at the top left corner of the field of
view, as viewed on a television monitor. The coordinate (horizontal count - 1, vertical count - 1) is at the
lower right corner. This is a left-handed coordinate system, and vision processing software will need to
take this into account.

Z0 FIFO (R) (0xD4)
Bits 15-9 Bit 8 Bits 7-0
Unused Frame marker Camera 0 pixel value

The ZO0 FIFO is a read-only register located at offset 0xD4. It should be accessed via 16-bit word reads,
although only the lower 9 bits are significant. The ZO0 FIFO stores the digitized values of each bright
pixel detected by the first camera (Camera 0) in the lower 8 bits. The ninth bit (Bit 8) is a frame marker.
Point Grabber II sets Bit 8 of the Z0 FIFO at the end of each video frame. Because of the way most CCD
cameras operate, the lower 8 bits of the Z0 FIFO will be zero when the ninth bit is 1.

Z1 FIFO (R) (0xD6)
Bits 15-9 Bit 8 Bits 7-0
Unused Frame marker Camera 1 pixel value

The Z1 FIFO is a read-only register located at offset 0xD6. It should be accessed via 16-bit word reads,
although only the lower 9 bits are significant. The Z1 FIFO stores the digitized values of each bright
pixel detected by the second camera (Camera 1) in the lower 8 bits. The ninth bit (Bit 8) is a frame
marker. Point Grabber II sets Bit 8 of the Z1 FIFO at the end of each video frame. Because of the way
most CCD cameras operate, the lower 8 bits of the Z0 FIFO will be zero when the ninth bit is 1. The Z1
FIFO frame marker serves the same purpose as the Z0 FIFO frame marker. Both are provided to allow
software synchronization checks.

Status Register
Status Register (R) (0xD9)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Z1 Full Z0 Full Y Full X Full Z1 Empty | ZO Empty | Y Empty X Empty

The Status Register is a read-only byte register located at offset 0xD9. Each bit in the register indicates
the full or empty status of each of the four FIFOs. Software should consult this register before
performing any FIFO reads; any nonzero bit indicates an error. If it detects an error, the software should
reset the FIFOs via the FIFO Reset Register (see below) to resynchronize the FIFOs.
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Threshold Registers

Threshold 0 Register (W) (0xD1)

Bits 7-0

Camera 0 threshold

The Threshold 0 Register is a write-only byte register located at offset 0xD1. The 8-bit value represents
a threshold voltage, from 0 V to 2 V, for Camera 0. The threshold voltage indicates the transition of the
video signal from dark to bright. When the Camera 0 video signal voltage is higher than the threshold,
Point Grabber I stores the X and Y scan location as well as the digitized signal strength. The threshold
voltage is also the lower reference voltage of the corresponding A/D converter.

Threshold 1 Register (W) (0xDS5)

Bits 7-0

Camera 1 threshold

The Threshold 1 Register is a write-only byte register located at offset 0xD5. The 8-bit value represents
a threshold voltage, from 0 V to 2 V, for Camera 1. The threshold voltage indicates the transition of the
video signal from dark to bright. When the Camera 1 video signal voltage is higher than the threshold,
Point Grabber II stores the X and Y scan location as well as the digitized signal strength. The threshold
voltage is also the lower reference voltage of the corresponding A/D converter.

ADC Limit Registers

ADC 0 Limit Register (W) (0xD3)

Bits 7-0

Camera 0 ADC limit

The ADC 0 Limit Register is a write-only byte register located at offset 0xD3. The 8-bit value represents
the upper reference voltage, from O V to 2 V, for the Camera 0 A/D converter. The setting of the upper
reference voltage alters the sensitivity of Point Grabber II. By setting ADC 0 Limit to correspond to the
highest expected voltage of the Camera O video signal, one can maximize sensitivity.

ADC 1 Limit Register (W) (0xD7)

Bits 7-0

Camera 1 ADC limit

The ADC 1 Limit Register is a write-only byte register located at offset 0xD7. The 8-bit value represents
the upper reference voltage, from 0 V to 2 V, for the Camera 1 A/D converter. The setting of the upper
reference voltage alters the sensitivity of Point Grabber II. By setting ADC 1 Limit to correspond to the
highest expected voltage of the Camera 1 video signal, one can maximize sensitivity.
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Enable Register
Enable Register (R/W) (0xDB)
Bit 7 Bits 6-2 Bit 1 Bit 0
Interrupt Enable Unused Camera 1 Enable Camera 0 Enable

The Enable Register is a read-write byte register located at offset 0OxDB. Logical 1 indicates enable. One
can individually control data collection from each camera via the corresponding enable bits. When a
camera is “disabled”, only the data storage for that camera is disabled. The camera is still operational,
and the video signal can still be viewed on a television monitor. Interrupt generation also may be
enabled or disabled using bit 7 of the Enable Register. Bits 6 through 2 are unused.

FIFO Reset Register

FIFO Reset Register (W) (0xDD)

Bits 7-0

Don’t Care

The FIFO Reset Register is a write-only byte register located at offset 0xDD. Any writes to this address
location will reset and empty all FIFOs. The value written is irrelevant.

The FIFOs need to be reset immediately after enabling interrupts to ensure that the data will be
synchronized. They should also be reset after an error has been detected.

Board Reset Register

Board Reset Register (W) (0xDF)

Bits 7-0

Don’t Care

The Board Reset Register is a write-only byte register located at offset 0xDF. Any writes to this address
location will reset Point Grabber II. The value written is irrelevant. Resetting the board brings Point
Grabber II to the power-on condition, which means that the cameras are disabled, the FIFOs are reset, the
threshold and ADC limit voltages are zero, interrupt is disabled, and the interrupt level and vector are
zero.

Interrupt Control Register

Interrupt Control Register (R/W) (0xE1)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

F FAC X/IN* IRE IRAC L2 L1 LO

The Interrupt Control Register is a read-write byte register located at offset OxE1. This register controls
the interrupt level, a separate interrupt enable, and fields that determine actions during an interrupt
acknowledge cycle. The fields are defined as follows:
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1. Interrupt level (L2, L1, LO) — The least significant 3-bit field of the register
determines the level at which an interrupt will be generated:
L2 L1 LO IRQ Level
0 0 0 Disabled
0 0 1 IRQ1
0 1 0 JIRQ2
0 1 1 IRQ3
1 0 0 IRQ4
1 0 1 IRQS
1 1 0 IRQ6
1 1 1 IRQ7
A value of zero in the field disables the interrupt.
2. Interrupt Enable (IRE) — This field (Bit 4) must be set (high level) to enable the bus
interrupt request.
3. Interrupt Auto-Clear (IRAC) — If the IRAC is set (Bit 3), IRE (Bit 4) is cleared during

an interrupt acknowledge cycle responding to this request. This action of clearing IRE
disables further interrupt request. To re-enable the interrupt associated with this
register, IRE must be set again by writing to the control register. Leave this bit unset
during normal operations.

4, External/Internal (X/IN*) — Always clear (low level) this bit for Point Grabber II.

5. Flag (F) — Bit 7 is a flag that can be used in conjunction with the test and set
instruction of the MC680xx family of microprocessors. It can be changed without
affecting Point Grabber II operation. This flag may be useful for processor-to-processor
communication and resource allocation (i.e., symaphors). This flag is typically not
used.

6. Flag Auto-Clear (FAC) — If FAC (Bit 6) is set, the Flag bit is automatically cleared
during an interrupt acknowledge cycle.

Interrupt Vector Register

Interrupt Vector Register (R/W) (0xE3)

Bits 7-0

Interrupt Vector

The Interrupt Vector Register is a read-write byte register located at offset 0xE3. This 8-bit interrupt
vector is supplied, during an interrupt acknowledge cycle, to the CPU for calculating the location of the
interrupt service routine. For the VMEbus, the routine is located at an address that is four (4) times the
vector value.
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B.2 Resolution Tests

Figures B.2 and B.3 show the steady-state noise characteristics of the Point Grabber II vision system.
The data was taken from the global vision system viewing a single LED. The vision system covers a
field of view of 2.4m in the z direction, and 1.7m in y direction. The noise is about .2mm in the x

direction and about .1mm in the y direction—a resolution of better than 1 in 10,000.

Resolution Test—X Direction
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Figure B.2: Noise Characteristics—X Direction

Figures B.4 and B.5 show the resolution of the vision system by demonstrating the transient
behavior. The LED, mounted on one of the free-flying payload objects, is moved slowly and smoothly
along a diagonal. The plots show relatively smooth, monotonic functions of time for the LED  and
y positions. Although there are no sharp jumps at camera-pixel boundaries, the pixel effect can still be
scen as deviations from a straight line in the plots. The “bumps” in the z direction occur at about every
5mm, and those in the y direction occur at about every 8mm.

There are 380 active camera pixels in the z direction and 190 active pixels in the y direction. The

size of each pixel, therefore, is calculated to be:

Tgize = 2400mm/380 = 6.6mm

Ysize = 1700mm/190 = 8.9mm
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Resolution Test—Y Direction
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Figure B.3: Noise Characteristics—Y Direction

This agrees reasonably well with the observed behavior in Figures B.4 and B.5. Larger targets or LED’s

that cover more camera pixels will alleviate this effect.
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Resolution Test—X Direction
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Figure B.5: Resolution Test—Y Direction



170 Appendix B. Point Grabber II Vision System

B.3 Schematics

The schematics start on the following page.
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B.4 PALASM Listings

B.4.1 DTACK Timing

TITLE PG DTACK TIMING

PATTERN 1

REVISION 3.0B

AUTHOR VINCENT CHEN

COMPANY ARL, STANFORD UNIVERSITY
DATE 09-30-90

; This Pal generates several handshaking signals required for the interface
; between the Point Grabber and the VME Bus:

; /VRESET is the VME reset signal, synchronized to SYSCLK.

; /ALATCH is the address latch signal. BSSTROBE initiates the latch.

; The latch is terminated by DS and AS going invalid during a READ cycle

; (ENDC) indicating that the VME Bus has completed the access, so we no longer
; need to address our board registers. On a WRITE cycle, the latch is

; terminated by our DTACK going valid, indicating that we will be ready

; for the next access (almost) immediately after acknowledging the WRITE.

; /DTACK is the data acknowledge signal the board sends the VME Bus

; indicating that the data is ready on READ cycles or that the data has

; been stored on WRITE cycles. The basic timing for /DTACK is through

: the CYCLE and DxCYCLE signals. Together, these guarantee a minimum of

; one (1) SYSCLK cycle (62.5 ns) between addressing board registers

; (DATAIO or IMIO valid) and lowering /DTACK, or four (4) SYSCLK cycles

; (250 ns) between writing the threshold D/A and lowering /DTACK. This

; stupid D/A (AD7226) requires a write pulse of a minimum of 200 ns. DDTACK
; is the data acknowledge from accessing the the data registers,

; while IMDTACK is the data acknowledge generated by the Interrupt

: Module chip. The CYCLE, DCYCLE, etc. registers are cleared by ALATCH

; going invalid.

; Bug fixes: added ALATCH to ENDC
H modified ENDC to deassert ALATCH immediate after DTACK on

H WRITES

CHIP PALPG_DTACK PAL20RA10
PIN 1 PL LOwW ;I
PIN 2 SYSCLK HIGH ;I
PIN 3 BSSTROBE LOW ;I
PIN 4 VMRESET LOW ;I
PIN 5 IMDTACK LOW HB S
PIN 6 THWRITE LOW ;I
PIN 7 DATAIO LOW ;I
PIN 8 IMIO LOW ;I
PIN 9 Ds HIGH ;I
PIN 10 As LOW S
PIN 11 W LOwW i
PIN 12 GND

PIN 13 OE LOwW S
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PIN 14 VRESET REG LOW ;0
PIN 15 ALATCH REG LOwW ;0
PIN 16 DTACK LOW ;0
PIN 17 DDTACK LOW ;0
PIN 18 ENDC LOwW ;0
PIN 19 CYCLE REG LOW ;0
PIN 20 DCYCLE REG LOW ;0
PIN 21 D2CYCLE REG LOW He
PIN 22 D3CYCLE REG LOW H©
PIN 23 DACYCLE REG LOW ;0
PIN 24 vcCC

EQUATIONS

; VRESET IS A SYNCHRONIZED VERSION OF VME RESET (VMRESET)

VRESET = VMRESET
VRESET.CLKF = SYSCLK

; ADDRESS LATCH IS TRIGGERED BY BSSTROBE AND CLEARED BY ENDC
ALATCH = VCC

ALATCH.CLKF
ALATCH.RSTF

BSSTROBE
ENDC

; DATA ACKNOWLEDGE FROM THE DATA SECTION. IF NOT TO THRESHOLD WRITES, THEN
; ONLY ONE SYSCLK DELAY. IF THRESHOLD WRITE, THEN 4 SYSCLK DELAYS.

DDTACK = DCYCLE * DATAIO * /THWRITE
+ DACYCLE * THWRITE

; DATA ACKNOWLEDGE TO THE VME BUS IS COMPRISED OF DTACKS FROM BOTH THE DATA
; SECTION AND THE INTERRUPT MODULE CHIP

DTACK = DCYCLE * DATAIO * /THWRITE
+ D4CYCLE * THWRITE
+ IMDTACK

; END CONDITION FOR A BOARD ACCESS CYCLE IS DS AND AS INVALID ON READ CYCLES,
; DTACK VALID ON WRITE CYCLES, OR VME RESET

ENDC = /DS * /AS * ALATCH * /W
+ DTACK * W
+ VRESET

; CYCLE TIMING IS INITIATED WHEN EITHER THE DATA SECTION OR INTERRUPT MODULE
; IS BEING ACCESSED. BY SYNCHRONIZING TO SYSCLK, DCYCLE IS GUARANTEED TO BE
; ASSERTED A MINIMUM OF ONE SYSCLK CYCLE AND A MAXIMUM OF TWO SYSCLK CYCLES

; AFTER THE BOARD REGISTERS HAVE BEEN ADDRESSED. CYCLE AND DCYCLE ARE

; CLEARED WHEN ALATCH IS INVALID. THE 4 TIMES DELAYED CYCLE SIGNAL, D4CYCLE,
; IS USED BY THE DAC ON WRITES, WHICH NEEDS 200NS. D4CYCLE IS GUARANTEEING

; A MINIMUM OF 250NS.

CYCLE = DS * DATAIO + DS * IMIO ; NOTE THAT DS MUST ALSO BE VALID
CYCLE.CLKF = SYSCLK
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CYCLE.RSTF = /ALATCH

DCYCLE = CYCLE
DCYCLE.CLKF = SYSCLK
DCYCLE.RSTF = /ALATCH

D2CYCLE = DCYCLE
D2CYCLE.CLKF = SYSCLK
D2CYCLE.RSTF = /ALATCH

D3CYCLE = D2CYCLE
D3CYCLE.CLKF = SYSCLK
D3CYCLE.RSTF = /ALATCH

DACYCLE = D3CYCLE
DACYCLE.CLKF = SYSCLK
D4CYCLE.RSTF = /ALATCH

SIMULATION

TRACE_ON SYSCLK DS DATAIO IMIO THWRITE IMDTACK

VMRESET VRESET BSSTROBE ALATCH ENDC CYCLE DCYCLE D4CYCLE DDTACK DTACK

SETF /PL OE /SYSCLK /BSSTROBE /DS /DATAIO /IMIO /THWRITE /IMDTACK /VMRESET

PRLDF /ALATCH /CYCLE /DCYCLE /D2CYCLE /D3CYCLE /D4CYCLE /VRESET

; FIRST TRY DATA SECTION ACCESS

SETF SYSCLK
SETF /SYSCLK
;CLOCKF SYSCLK

SETF BSSTROBE
CHECK ALATCH

SETF DS
SETF DATAIO

FOR I := 1 TO 4 DO
BEGIN
SETF SYSCLK
SETF /SYSCLK
H CLOCKF SYSCLK
END

SETF /DS

SETF /DATAIO
SETF /BSSTROBE
SETF SYSCLK
SETF /SYSCLK

; CLOCKF SYSCLK

; NOW TRY THRESHOLD WRITES

RIGHT ACCESS
CHECK FOR ALATCH VALID

DATA STROBE
DATA ACCESS

WAIT 4 CLOCKS
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SETF SYSCLK
SETF /SYSCLK
;: CLOCKF SYSCLK

SETF BSSTROBE
CHECK ALATCH

SETF DATAIO THWRITE
SETF DS

FOR I := 1 TO 6 DO
BEGIN
SETF SYSCLK
SETF /SYSCLK
; CLOCKF SYSCLK
END

SETF /DS

SETF /DATAIO /THWRITE

SETF /BSSTROBE
SETF SYSCLK
SETF /SYSCLK

; CLOCKF SYSCLK

; NOW TRY IM ACCESS
SETF SYSCLK

SETF /SYSCLK

; CLOCKF SYSCLK

SETF BSSTROBE
CHECK ALATCH

SETF DS
SETF IMIO

FOR I := 1 TO 4 DO
BEGIN
SETF SYSCLK
SETF /SYSCLK
H CLOCKF SYSCLK
END

SETF IMDTACK
SETF SYSCLK
SETF /SYSCLK
;CLOCKF SYSCLK

SETF /BSSTROBE
SETF /DS

SETF /IMIO
SETF SYSCLK
SETF /SYSCLK
;CLOCKF SYSCLK
SETF /IMDTACK

RIGHT ACCESS
CHECK FOR ALATCH

DATA ACCESS
DATA STROBE

WAIT 4 CLOCKS

MAKE CLOCK HIGH

RIGHT ACCESS
CHECK FOR ALATCH

DATA STROEBE
IM ACCESS

WAIT 4 CLOCKS

IM’'S DTACK

VALID

VALID
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; CHECK VRESET

SETF VMRESET
SETF SYSCLK
SETF /SYSCLK
;CLOCKF SYSCLK
SETF SYSCLK
SETF /SYSCLK
;CLOCKF SYSCLK

TRACE_OFF

B.4.2 Buffer Enables and Device Select

TITLE PG BUFFER ENABLES AND DEVICE SELECT
PATTERN 1

REVISION 2.0+

AUTHOR VINCENT CHEN

COMPANY ARL, STANFORD UNIVERSITY

DATE 2-08-90

; RAISE RESET LINE

; This Point Grabber PAL generates enables for the data buffers (/BHEN,

; /BLEN), device selects
; strobe (/BSSTROBE).

(/DATAIO,

/IMIO,

/THWRITE), and the board select

; /DATAIO indicates access to the data section of the Point Grabber.
: /IMIO indicates access to the Interrupt Module.

; /BHEN is the enable for the high byte of data, and it is asserted

; only when access is to the data section on a read cycle.

; /BLEN is the enable for the low byte of data, and it is asserted

; when access is to either the data or IM sections and also during an

; interrupt cycle. When the processor is responding to an interrupt from

; the Point Grabber,

the Point Grabber will receive the daisy-chained

; /VMIACKIN signal, but it will not assert /IACKOUT, thus enabling the
; data buffer. The Interrupt module will then send out the interrupt
; vector onto the VME Bus.

; BSSTROBE is the board select strobe.
; comparator comparing A0B-AlS,

/CMP is the output of the 8-bit
and VMAMx are the address modifier bits. The

; board is presently configured to fit in short IO space, occupying a 128 byte
; block. The location of the block is determined by the input to the

; comparator generating /CMP.

CHIP PALPG_EN
PIN 1 CMP
PIN 2 ABO7
PIN 3 VMAMO
PIN 4 VMAM1
PIN 5 VMAM3
PIN 6 VMAM4
PIN 7 VMAMS
PIN 8 AQ3
PIN 9 AQ4
PIN 10 AQS

LOW

HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH
HIGH

PAL20LS8

Mok HHHHH H H H
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PIN 11 AD6
PIN 12 GND

PIN 13 ALATCH
PIN 14 VMIACKIN
PIN 15 BSSTROBE
PIN 16 IACKOUT
PIN 17 D4CYCLE
PIN 18 BHEN

PIN 19 BLEN
PIN 20 DATAIO
PIN 21 IMIO

PIN 22 THWRITE
PIN 23 W

PIN 24 vCC

EQUATIONS

; BOARD SELECT HAS HIGH

HIGH

LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW

Ha o

128 BYTES OF A 256 BYTE BLOCK IN SHORT IO SPACE

BSSTROBE = CMP * ABO7 * VMAMO * /VMAM]1 * VMAM3 * /VMAM4 * VMAMS
* AO6 * /ADS * A04
+ CMP * AB(O7 * VMAMO * /VMAM1 * VMAM3 * /VMAM4 * VMAMS
* A06 * AO5 * /A04
BHEN = /W * ALATCH * A06 * /A05 * AQ4
BLEN /IACKOUT * VMIACKIN

+ + 0

ALATCH * AQ06 * /A05 * AO4
ALATCH * AO6 * A0S * /AQ04

DATAIO = ALATCH * AQ06 * /AQ5 * A04

IMIO = ALATCH * AO6 * AQ05 * /A04

THWRITE = W * ALATCH * AO6 * /AQ05 * AO04 * /A03 * /DACYCLE

SIMULATION

TRACE_ON CMP ABO7 VMAMO VMAM1 VMAM3 VMAM4 VMAMS BSSTROBE

AQ06 AO5 A04 A03 ALATCH W VMIACKIN IACKOUT
BLEN BHEN DATAIO IMIO D4CYCLE THWRITE

SETF /CMP AB0O7 VMAMO VMAM1 VMAM3 VMAM4 VMAMS
/ALATCH AO6 AO05 AO4 AO03 W /VMIACKIN /IACKOUT /DACYCLE

; TEST BSSTROBE

SETF CMP

SETF /VMAM1
SETF /VMAM4
CHECK /BSSTROBE
SETF /A0S

CHECK BSSTROBE
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SETF A05 /A04

CHECK BSSTROBE

SETF A04

SETF /CMP VMAM1 VMAM4

; TEST BLEN

SETF VMIACKIN

CHECK BLEN

SETF IACKOUT

CHECK /BLEN

SETF /VMIACKIN /IACKOUT

SETF AQ6 /A0S AO04
SETF ALATCH
CHECK BLEN DATAIO
SETF /ALATCH A05

SETF A06 A05 /A04
SETF ALATCH
CHECK BLEN IMIO
SETF /ALATCH A04

; TEST BHEN

SETF /W

SETF A06 /A05 A04
SETF ALATCH

CHECK BHEN

SETF /ALATCH W AQ05

; TEST THWRITE

SETF /W

SETF A06 /A05 A04 /A03
SETF W

SETF ALATCH

CHECK THWRITE

SETF /CMP AB07 VMAM1 VMAM4
SETF D4CYCLE

CHECK /THWRITE

SETF /ALATCH

SETF A0S5 A03 /D4CYCLE
SETF /W

TRACE_OFF

B.4.3 Pixel Detect

TITLE PG PIXEL DETECTOR
PATTERN 1

REVISION 3.0+

AUTHOR Vincent Chen

'

’

’

ALSO TEST DATAIO

ALSO TEST IMIO

ALSO TEST DATAIO
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COMPANY Stanford University, ARL
DATE 07-21-90

; This Point Grabber PAL generates the PIXel ON signal to trigger FIFO
; writes. It takes as input the ADC output and the Enable signal
; for a camera and generates the PIX_ON signal

CHIP PALPG_PIX PAL16LS8
PIN 1 EN HIGH ;I
PIN 2 ADO HIGH HpS
PIN 3 AD1 HIGH 1
PIN 4 AD2 HIGH I
PIN 5 AD3 HIGH I
PIN 6 AD4 HIGH ;I
PIN 7 AD5 HIGH ;I
PIN 8 ADS HIGH ;I
PIN 9 AD7 HIGH I
PIN 10 GND

PIN 11 NC

PIN 12 PIX_ON HIGH ;0
PIN 13 NC

PIN 14 NC

PIN 15 NC

PIN 16 NC

PIN 17 NC

PIN 18 NC

PIN 19 NC

PIN 20 vee

EQUATIONS

/PIX_ON = /ADO * /ADl1 * /AD2 * /AD3 * /AD4 * /ADS * /AD6 * /AD7
+ /EN ;Need the enable signal

SIMULATION
TRACE_ON EN ADO AD1 AD2 AD3 AD4 ADS AD6 AD7 PIX_ON
SETF /EN /ADO /AD1l /AD2 /AD3 /AD4 /AD5 /AD6 /AD7 ;init

;test PIX_ON signal
SETF ADO
CHECK /PIX_ON
SETF /ADO
SETF EN

SETF ADO
CHECK PIX_ON
SETF /ADO
CHECK /PIX_ON
SETF AD7
CHECK PIX_ON
SETF /AD7
SETF /EN
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TRACE_OFF

B.4.4 Data Strobe and Resets

TITLE PG STROBES AND RESETS
PATTERN 1

REVISION 2.0+

AUTHOR VINCENT CHEN

COMPANY ARL, STANFORD UNIVERSITY
DATE 2-08-90

; This Point Grabber PAL generates the strobe signals for the camera enables
; and reset signals, as well as some auxiliary signals required to
: interface with the VME Bus.

; IACK is the interrupt acknowledge from the bus master. It is also

; asserted, along with CS to reset the interrupt module.

; ENSTB is the strobe for the camera/interrupt enable latch.

; /FFRESET is the reset for the FIFOs.

; /RESET is the reset for the threshold latches.

; DS is the data strobe for the Point Grabber, comprising of VME'’s

; DS1 and DSO.

; /CS is the chip select for the Interrupt Module. It is asserted

; when DCYCLE becomes valid, allowing time for data to stabilize. On write

; cycles, the leading edge of /CS makes the IM latch the data, and on read

; cycles, /CS signals a data acknowledge to the IM. The Interrupt Module can
; be reset by asserting the /IACK and /CS lines, thus VME resets (VRESET) and
; software resets (WRESET) need to assert /CS.

CHIP PALPG_STROBE PAL16L8
PIN 1 AS LOW HS
PIN 2 VMIACK LOW B o
PIN 3 DDTACK Low i I
PIN 4 WEN LOW ;I
PIN ) FRESET LOW ;I
PIN 6 WRESET LOW ;1
PIN 7 VRESET LOW 71
PIN 8 VMDSO0 LOW ;I
PIN 9 VMDS1 LOW ;I
PIN 10 GND

PIN 11 DCYCLE LOW H S
PIN 12 NC

PIN 13 IMIO LOW H S
PIN 14 IACK LOW ;0
PIN 15 ENSTB HIGH ;0
PIN 16 FFRESET LOW ;0
PIN 17 RESET LOW ;0
PIN 18 DS HIGH ;0
PIN 19 cs LOW ;0

PIN 20 vece
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EQUATIONS

IACK = VMIACK * AS + VRESET + WRESET

/ENSTB = /WEN + /DDTACK

FFRESET = VRESET + WRESET + FRESET

RESET = VRESET + WRESET

/DS = /VMDSO * /VMDS1

CS = DCYCLE * IMIO + VRESET + WRESET

SIMULATION

TRACE_ON DDTACK WEN ENSTB AS VMIACK WRESET VRESET FRESET FFRESET RESET IACK

VMDS0 VMDS1 DS DCYCLE IMIO CS

SETF /WEN /DDTACK /AS /VMIACK /WRESET /VRESET /FRESET /VMDSO

/VMDS1 /DCYCLE /IMIO ; INITIALIZE

SETF WEN

CHECK /ENSTB

SETF DDTACK ; WRITE ENABLE REGISTER

CHECK ENSTB
SETF /DDTACK /WEN
CHECK /ENSTB

; TEST IACK

SETF VMIACK
SETF AS
CHECK IACK
SETF /VMIACK
CHECK /IACK
SETF /AS

; NOW TEST RESETS

CHECK /FFRESET /RESET /CS

SETF VRESET ; VME RESET
CHECK FFRESET RESET CS

SETF /VRESET

SETF WRESET ; BOARD RESET
CHECK FFRESET RESET CS
SETF /WRESET

SETF FRESET ; FIFO RESET
CHECK FFRESET /RESET /CS



B.4. PALASM Listings

189

SETF /FRESET

CHECK /DS

SETF VMDSO0 ; TEST DS
CHECK DS

SETF /VMDSO

SETF VMDS1

CHECK DS

SETF /VMDS1

CHECK /DS

SETF IMIO

SETF DCYCLE ; NOW TEST CS
CHECK CS

SETF /DCYCLE

CHECK /CS

SETF /IMIO
TRACE_OFF

B.4.5 Horizontal and Vertical Syncs

TITLE PG SYNC GENERATOR, INTERRUPT AND FIFO WRITE
PATTERN 1

REVISION 3.0+

AUTHOR VINCENT CHEN

COMPANY ARL, STANFORD UNIVERSITY

DATE 07-21-90

; Requires 20ns PAL, or SEEQ PQ20RA10Z-35

; This Point Grabber PAL provides the sync signals to the cameras as well
; as the interrupt signals at the end of each frame and the write pulse
; to the FIFOs at each edge and at the end of each frame.

CHIP PALPG_SYNC PAL20RA10

PIN 1 PL LOW ;I

PIN 2 XCLK HIGH ;1

PIN 3 YCO HIGH ;1

PIN 4 YC02 HIGH ;I

PIN 5 XCo HIGH ;1

PIN 6 XC06 HIGH 71

PIN 7 XCco2 HIGH H S

PIN 8 IMDTACK LOW i1

PIN 9 INTEN HIGH I

PIN 10 PIX_ONO HIGH i I

PIN 11 PIX_ON1 HIGH i1

PIN 12 GND

PIN 13 OE LOw ;I
PIN 14 HORIZ REG HIGH ;0

PIN 15 HSTB REG LOW ;0
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PIN 16 HRST REG LOW ;0
PIN 17 VERT REG HIGH ;0
PIN 18 VSTB REG LOW e
PIN 19 VRST REG Low ;0
PIN 20 FRAME REG LOW ;0
PIN 21 FRST HIGH ;0
PIN 22 FWRITE REG LOW ;0
PIN 23 1IRQ REG LOW ;0

PIN 24 vCC

EQUATIONS

HSTB = XCO
HSTB.CLKF = XCLK

HORIZ = VCC
HORIZ.CLKF = HSTB
HORIZ.SETF = HRST

" HRST = XCO06

HRST.CLKF = XC02
HRST.RSTF = /HORIZ * HRST

VSTB = YCO
VSTB.CLKF = XCLK

VERT = VCC
VERT.CLKF = VSTB
VERT.SETF = VRST

VRST = VCC
VRST.CLKF = YCO02
VRST.RSTF = /VERT * VRST

IRQ = INTEN
IRQ.CLKF = VERT
IRQ.RSTF = IMDTACK

FRAME = VCC
FRAME.CLKF = VERT
FRAME.RSTF = FRST

FRST = /INTEN + FWRITE * XCLK

FWRITE = FRAME + PIX _ONO + PIX_ON1

FWRITE.CLKF
FWRITE.RSTF

/XCLK
FRST

STROBE TO LATCH HORIZ SYNC
CLOCKED BY XCLK

HORIZ SYNC
LATCHED BY HSTB
RESET BY HRST

RESET FOR HORIZ SYNC

CLOCKED BY XC02 FOLLOWING XC06

CLEARED BY HRST AND AFTER
HORIZ SYNC IS CLEARED

STROBE TO LATCH VERTICAL SYNC
CLOCKED BY XCLK

VERTICAL SYNC
LATCHED BY VSTB
RESET BY VRST

RESET FOR VERTICAL SYNC

CLOCKED BY YCO02 (2 LINES)

CLEARED BY VRST AND AFTER
VERTICAL SYNC IS CLEARED

IRQ GENERATED ONLY WHEN ENABLED
CLOCKED BY VERT
CLEARED BY IMDTACK

FRAME MARKER WRITE STROBE
CLOCKED BY VERT
CLEARED BY FRST

FRAME MARKER STROBE RESET WHEN
INTERRUPTS NOT ENABLED AND AFTER
WRITE PULSE

FIFO WRITE PULSE WHEN FRAME OR
ANY PIXELS ON

CLOCKED ON /XCLK (DELAY)

CLEARED IF INTERRUPTS NOT
ENABLED
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SIMULATION

TRACE_ON XCLK XCO XC06 XCO02 HSTB HORIZ HRST YCO YC02 VSTB VERT VRST
INTEN IMDTACK IRQ PIX_ONO PIX_ON1 FRAME FWRITE FRST

SETF /PL OE /XCLK /YCO /YC02 /XCO /XC06 /XC02 INTEN /IMDTACK /PIX_ONO /PIX_ON1
PRLDF VSTB /VERT VRST HSTB /HORIZ HRST IRQ FRAME FWRITE
; TEST HORIZ SYNC

SETF XCO
SETF XCLK
SETF /XCLK
CHECK HSTB
SETF /XCO
CHECK HORIZ
SETF XC06
SETF XCLK
SETF /XCLK
SETF XC02
SETF XCLK
SETF /XCLK
CHECK /HORIZ
SETF /XC06 /XC02
SETF XCLK
SETF /XCLK

; TEST VERTICAL SYNC AND IRQ

SETF INTEN
SETF XCLK
SETF /XCLK

SETF YCO
SETF XCLK
CHECK VSTB
SETF /YCO
CHECK VERT
CHECK IRQ FRAME
SETF /XCLK
CHECK FWRITE
SETF XCLK
SETF /XCLK
CHECK /FRAME
SETF YCO02
SETF XCLK
SETF /XCLK
CHECK /VERT
SETF XCLK
SETF /XCLK
SETF /YC02
SETF XCLK
SETF /XCLK
SETF IMDTACK
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CHECK /IRQ
SETF XCLK
SETF /XCLK
SETF /IMDTACK

; TEST INTEN ON VERTICAL SYNC
SETF /INTEN

SETF YCO

SETF XCLK

CHECK VSTB

CHECK VERT

CHECK /IRQ /FRAME
SETF /YCO

SETF XCLK

SETF /XCLK

; TEST PIX_ONO WRITES
SETF INTEN

SETF XCLK
SETF PIX_ONO
CHECK /FWRITE
SETF /XCLK
CHECK FWRITE
SETF /PIX_ONO
SETF XCLK
CHECK /FWRITE
SETF /XCLK

SETF /INTEN

SETF XCLK
SETF PIX_ONO
SETF /XCLK
CHECK /FWRITE
SETF /PIX_ONO

; TEST PIX_ON1 WRITES
SETF INTEN

SETF XCLK
SETF PIX_ON1
CHECK /FWRITE
SETF /XCLK
CHECK FWRITE
SETF /PIX_ON1
SETF XCLK
CHECK /FWRITE
SETF /XCLK

SETF /INTEN
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SETF XCLK
SETF PIX_ON1
SETF /XCLK
CHECK /FWRITE
SETF /PIX_ON1

TRACE_OFF
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Calibration

All sensor and actuator signals are sampled by the Analog-to-Digital (A/D) and Digital-to-Analog (D/A)
circuitry before being passed to the controller. The analog signals from the sensors and to the actuators
are adjusted such that full-scale readings on the A/D’s and D/A’s correspond with the maximum outputs
and inputs of the sensors and actuators, respectively. The controller, therefore, must provide at least a
gain and an offset for each sensor and actuator signal to transform them into the proper units.
Nonlinearities in the sensors or actuators, however, can make a single gain and offset for each
device inadequate. Calibration with a polynomial correction function can often reduce the effects of
the nonlinearities. Three areas where polynomial fits made a significant improvement in the Multi-
Manipulator Free-Flying Space Robot experiment are the camera-lens-distortion cotrection, the RVDT
joint-angle nonlinearity compensation, and the motor-torque-curve compensation. Accordingly, this

appendix is divided into three sections to show the improvement of a polynomial fit in each case.

C.1 Camera-Lens-Distortion Correction

The camera lens used in the global vision system is a 6mm wide-angle lens. There are, therefore, some
barrel-distortion effects around the edges. Since the lens is circularly symmetric, this distortion is a
function of the radius. To correct for this distortion, the calibration procedure performs a polynomial

fit as a function of both the = and y coordinates. That is:

e = fo(TmsYm) (C.1)

Ye = fy(xm’ ym)

194
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where ., and y,,, represent the measured z and y coordinates of a point, . and y, are the corrected
values, and f; and f, are the polynomial correction functions. This correction is equivalent to

performing the correction as a function of the radius, since the radius is itself a function of x and y:

rm = 22, + %, (C.2)

Moreover, performing this calibration also reduces errors caused by camera tilt and rotation.

A large plate containing a grid of 8 X 16 evenly-space LED’s is used for calibration'. The LED's are
spaced at 6 inches and a complete grid of 12 x 16 LED’s is needed to cover the field of view of a camera.
The calibration plate can be shifted to provide the full set of data, and the overlapping rows are used
to accurately align the two calibration plate positions. The calibration routines find the coefficients of
polynomials that minimize the errors between measured LED locations and the actual known locations
of the LED’s on the calibration plate.

The functions of a third-order polynomial fit, for example, have the form:

To = Cop@l + oy T + o T+ Cay ¥ F Co VR F Castm

+C222 Um + CosTm¥2, + CasTm¥Ym + Czy (C.3)
Ye = Cyo*'”?n + Cyl""fn + CpTm + cysy?n + Cy4yrzn t CysYm

+ey T2 Ym + CpyTm¥m + CypTmYm + Cy, (C.4)

Given the polynomial order n, the number of coefficients is M = (n+1)(n+2)/2, thus the third-order
fit has ten coefhicients for each coordinate.
The coefficients are determined by solving a least-squares problem. Each row ¢ of the regressor

matrix A is formed using a measured data pair (Zm;, Ym,) as:

[232,-“ xzn.' Tmi y‘?n;‘ yzn.' Ym, xfmym‘ xm.-yfm Tm;Ym, 1] (C'S)

Denoting the actual location of the ith LED as (Zq,, ¥a,), the least-squares problem for a collection of
N measured data sets is then formed as:

2 3 2 2 2
Za) Va ‘2n1 Tmy fmy Vmy Y¥my ¥mp ImyVmp Fmyim, Tmpym; 1 cxy  Cyg
Ta va s 2 m U3 V2 ym =2, vm Tm V2 Tmpa ¥m 1 <z c
N N my "My N ¥Vmpy Vmy N *my¥myN N¥my NN R M VM
- ~ ~ ’ —
X A C

The calibration plate is built by Kurt Zimmerman.
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Solving the least-squares problem for C gives both sets of coefficients to use for lens-distortion
correction. This can be performed easily with a single command in MATLAB: C = A\X.

Figure C.1 shows the effects of first-order, second-order, and third-order polynomial fits. The left
column shows the actual LED locations as ‘o’s and the corrected locations as ‘+’s for each order fit.
The right plots show, qualitatively, the errors in each fit in a three-dimensional view?. The error plots
for the first- and second-order fits show clearly the circularly-symmetric effect of the lens distortion.
The plots for the third-order fit show the dramatic improvement. Using even higher order fits does
not significantly improve the fit, and has the disadvantage of having too many coefficients, slowing the
computation.

The MATLAB code for performing the polynomial fits follow.

?The upper left data point in each error plot is a dummy value 1o preserve the scaling throughout the three plots.



C.1. Camera-Lens-Distortion Correction

Y Position (m)

Y Position (m)

Y Position (m)

15 First-Order Fit
1t j
QIIIPVCEOEOOOPOP
G0 OEEOOELROOLS
05| @0ececcsssoveces
. Q0066060000006 6 )
socecvecose00CRRE
steecece000008RE
O secececceecnsoone 1
evc0c0e00PRORBBDE
90CEOEOPEEOHIIPIIOIRES
05, 9ceccccoss0e000e j
00200 EC0PC0ORBOE
0000CECCOOPOBEOD
-1+ o Actual ]
+ Fit
-1.5
15 -1 05 0 0S5 1 1.5
X Position (m)
Second-Order Fit
1.5
1- QIO OLEOOOSEHOILPL 1
FIC0EPCOOO2EBED
05| @ececccescececas |
. 00O EOEOOB0B000
2200600000000 206
2ceec06E02080088B6
0} sceecececnvvanosase 1
0006000030000
2200006000030 06
05 2006060000006 000 4
820000600000 RROD
OC0PPOIIIOTDPREOD
-1 o Actual
+ Fit
-15
‘15 -1 05 0 0S5 1 1.5
X Position (m)
L5 Third-Order Fit
Il eescceccccccoces )
ePOOO0OROOBPDODD
05 PoPPPOOIORODOOROPREREO
D ecoeccce00CROOCS 1
cedoeneOOOREORORRR
CTOEEOCOOEOOODBO
0 ececcoceoscneets 1
PP0EROOEO0OODROD
Ry
-0.5 QPO RQOPROOOOOOQ
deoeobOODOODRODOEDROE
PO OCPERRIPODODODEOS
-1} o Actual 1
+ Fit
-1.5
15 -1 05 0 0S5 1 1.5

X Position (m)

First-Order Fit Error

Maximum Error = 40.0 mm
Mean Error = 9.69 mm

Second-Order Fit Error

Maximum Error = 34.2 mm
Mean Error = 9.16 mm

Third-Order Fit Error

Maximum Error = 7.8 mm
Mean Error = 1.50 mm

Figure C.1: Lens-Distortion Calibration

These are the lens-distortion correction results for three different polynomial fits. The left plots
show the actual LED locations as the ‘o’s and the corrected measured locations as ‘+s. It can
be seen that there is significant improvement with the third-order polynomial. The right plots
show the errors in a three-dimensional view. The upper-right corner of each error plot contains
a dummy data point, used as a reference to preserve the scaling throughout all three plots.
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C.1.1 Polynomial Fit to Two Variables

function p = polyfit2(x,y,n)

$ POLYFIT2 POLYFIT2 (x,y,n) finds the coefficients of

% two-variable polynomials formed from the data in

% matrix x of degree n that fits the data in matrix y in
$ a least-sguares sense. Each column of x represents a

% variable, and a polynomial is fit to each column of y.
%

L4

Vincent Chen 1-4-90
Revised 7-31-90 for only 2 variables w/ cross terms
Copyright (c) 1990

9 P

the regression problem is formulated in matrix format as:

"

Y A*P or
3 2 3 2 2 2

y = [x1 x1 =x1 x2 x2 x2 x1 x2 x1x2 x1x2 1) ([pl3
pl2
pll
p23
p22
p2l

p0 ]
where the matrix P contains the coefficients to be found. Each column
of P contains the coefficients for a fit to the corresponding column

of y. NOTE that there is only one constant term coefficient, p0.
For a 7th order polynomial of a single variable, matrix A would be:

A= [x."7 xXx.76 x.”5 x.74 x.”3 x.”2 x ones(x})];

dP dP dP dP IP dP OGP OP OO0 JO IO JP IR P OP P P IP IO JP 90 JP IP I

See also polyval2

xs = size(x);
ys = sizel(y);
if ( xs(1l) "= ys(l) )
error('X and Y must have the same number of rows’)
end
if ( (xs(2) "= 2) | (ys(2) "= 2) )
error(’'X and Y must have exactly 2 columns’)
end

% A must have same number of rows as x and each column must be
$ repeated n times
Ancol = 0;
for i = 0:n
Ancol = Ancol + i + 1;
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end

if ( xs(1) < Ancol )

error {'Not enough data to perform the fit, decrease n’)

end
A = ones{xs(1l), Ancol);

% Construct Vandermonde matrix
for i = 1:2
for j=1l:n
A(:,n*(i-1)+3) = x(:,1i)." (n+1-3);
end
end

Aindex = 2*n + 1;
for i = 1:n-1
for j = 2*n-(i-1):2*n
A(:,Aindex) = A(:,1i+1).*A(:,3);
Aindex = Aindex + 1;
end
end

p = (A\y):

C.1.2 Evaluation of Polynomial of Two Variables

function y = polyval2(c,x)
% POLYVAL2 Polynomial evaluation.

c = [cl3
cl2
cll
c23
c22
c2l
c021
c012
c011
c0]

and if X is [x1 x2], then

JP dO OP P dP 9P P OF P OP OP O OP JP OP OP P dP JP dP dP df P

If C is a matrix whose column elements are the coefficients of a
polynomial, then POLYVAL2(C,X) is the value of the
polynomials evaluated at X. If X is a vector,
the polynomial is evaluated at all points in X.
If X is a matrix, then each column of X represents a variable
in a two-variable polynomial, and each column of C contains
the coefficients of the variables in succession.
variable, 3rd order polynomial, a column of C looks like:

For a two
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% y =¢l3 * x1 + cl2 * x1 + cll1l * x1
%

% 3 2

% + c23 * x2 + ¢22 * x2 + c21 * x2
$

% 2 2
% + ¢021 * x1 * x2 + c012 * x1 * x2
%

% + ¢011 * x2 * x2

%

% + ¢c0

% Polynomial evaluation c(x) using Horner’'s method

% Vincent Chen 1-5-90

% Revised

% Copyright 1990

% See also polyfit2

[m,n] = size(x);
{mc, nc)] = size(c);
order = 0;

ocount = 1;
while ocount < mc,

order = order + 1;

ocount = ocount + order + 1;
end

if ( ocount "= mc )

error(’'column size of C does not match any order of polynomials’)

end

if (m+n) == 2

% Make it scream for scalar X. Polynomial evaluation can be
% implemented as a recursive digital filter.

y = zeros({l,nc);
for i = 1l:nc
yy = filter(l,[1 -x],c(:,i));
y(l,i) = yy(nc);
end
return
end

% Do general case where X is an array
y = zeros(m,nc);
for j=1:n
yy=zeros(m,nc);
for i=l:order
vy = (x(:,j) * ones(l,nc)) .* yy...

+ ones{m,1) * c(((j-1)*order)+i,:

end
Yy =y + {(x(:,j) * ones(l,nc)) .* yy:
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end
cindex=2*order+1;
for i = order-1:-1:1
for j = order-i:-1:1
y =y + ({x(: ,1) * ones(l, nc)).” i).* ((x(:,2) * ones(1, nc)).” J).*...
(ones(m, 1) * c(cindex,:));
cindex = cindex + 1;
end
end

y =y + ones(m,1} * c{mc,:);

C.2 Joint-Angle Calibration

The RVDT’s used to measure joint angles also contain some nonlinearity. A simple third-order
polynomial as a function of the a single variable—the measured joint-angle—is used for each joint
RVDT.

A calibration jig, containing holes in know locations, is bolted to the robot base. The end effector
of each manipulator is place in each of the holes for RVDT readings. These are matched with the joint
angles derived from exact inverse-kinematics equations.

Figure C.2 shows the errors of using a linear fit vs. a third-order fit for each joint. In all cases, there

is noticeable improvement.

C.3 Torque-Curve Calibration

The Aeroflex brushless DC motors used to actuate the space robot manipulators deliver smooth torques
with very low friction. The motors are, however, limited-angle torquers, and the delivered torques for
a given input current drop as the motors rotates away from zero angle. This effect is symmetric around
the zero angle of each motor, and can be minimized by introducing a scaling function that is dependent
on the motor angle. A scaling function essentially boosts the motor current to achieve the requested
output torque for all moror angles.

The torque curve, i.e., scaling function, can be modelled as a fourth-order polynomial, restricted to
having a single inflection point at the central motor angle. Since the controller has direct access to the

joint-angles rather than motor angles, the calibration curves are derived as functions of the joint-angles.



202 Appendix C. Calibration
12 Right Shoulder Calibration 08 Right Elbow Calibration
1 I —— Linear fit error —— Linear fit error
o8l | Lo Third Order error 0.6}
0.6 ] 04}
B 04 1%
K L 02
T 02 1<
E o 1E O
-0.2 1 02} 4
0.4 1 o
0.6 =
0855700 80 €0 Z0 30 0 30 40 60 OO 40 60 80 100 120 140 160
actual angle (deg) actual angle (deg)
2 Left Shoulder Calibration 06 Left Elbow Calibration
—— Linear fit error 05+ —— Linear fit error
IR Third Order error 04l | L Third Order error
o | oal
% ® 02
2 s 132 ol
§ E o
o 1 01t
05 02+
03¢
o0 40 30 0 20 40 60 80 100 120 460 140 120 100 80 €0 40 30 0
actual angle (deg) actual angle (deg)
Figure C.2: Joint-Angle Calibration Errors
These plots show the calibration errors for a linear fit vs. a third-order fit for cach joint. They
clearly show the improvement with the third-order fits.
They have the form:
4 2
scale; = c4; (§i — Gofferi)” + €2i (%5 — Goffiers)” + 1 (C.6)

where gofier; is the angle of joint ¢ that corresponds to the zero angle of motor 7, and c4; and c;; are
the coefficients to be derived from least-squares fits®. The requested torques from the control laws are
multiplied by these scale factors before sending them to the motor drivers.

Figures C.3 and C.4 show typical calibration curves. The data was taken by measuring the requested

torques necessary to cancel the effects of a known applied torques at different joint angles. The ‘o’s

3Strictly speaking, c2; should be zero to force a single inflection point in the torque curve, but its presence can improve

the fir.
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indicate the values of the applied torques, the ‘+’s indicate the torques that the control law requests, and
the ‘s indicate the requested torques after fourth-order fit. For a perfect fit, the ‘o’s and the s should

overlap. The plots show that the fit is very reasonable.

Right-Shoulder Torque Calibration

07 -
+ o Acmal
06" + Measured
; x Fit
05t .
B ' ) 3 »
Z 04 “
o e
E? 03+ L PR, P .
o
=
0.2+ . ‘_’/;/
0.1} )

0—100 80 60 40 20 0 20

Shoulder Angle (deg)

Figure C.3: Right Shoulder Motor Calibration Curves

The lines in Figures C.3 and C.4 plot the torque curve as a continuous function of the joint angle for
the three values of applied torques. Ideally, these torque curves should intersect the ‘4’ marks, and the
figures show that the torque curves the torque curves do fit the measured values, indicating again that

the fourth-order calibration polynomial is a good model for the behavior of the manipulator motors.

C.3.1 Torque Calibration File

% Name:

% torquecal.m - motor torgue calibration

%

% Description:

% The first section lists the measured data and the rest performs
% the calibration.

%

{rm *.met

if arm == 0 % Right Shoulder
% Data
t0=-[{-.06 -.015 .01 .03 .05];
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0.7 Left-Shoulder Torque Calibration
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Figure C.4: Left Shoulder Motor Calibration Curves

tl=-[.22 .19 .21 .23 .27);
t2=-{.46 .375 .385 .42 .48);
t3=-{.70 .555 .56 .61 .69];

% The angles at which the data were taken

ang0=[-1.75 -1.25 -.78 ~.25 .25);

% Gain for the motor

% Joint angle corresponding to motor’s zero angle

sc = -0.8272;

gl = -.65;

% Plotting axes and title text

axis([-2*180/pi .5*180/pi 0 .7));
tl='Right’;

else % Left Shoulder
% Data

t0=-(-.05 -.04 .0 .04 .1);
tl=-[-.28 -.25 -.23 -.18 -.21];
t2=-[-.5 -.43 -.395 -.38 ~-.47];
t3=-[-.725 -.625 -.58 -.55 ~-.73];

$ The angles at which the data were taken

ang0={-.25 .25 .78 1.25 1.75];

$ Gain for the motor

% Joint angle corresponding to motor’'s zero angle

sc = .7872;

g0 = .65;

% Plotting axes and title text

end

axis([-.5*180/pi 2*180/pi 0 .71);
tl='Left’;
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% Set up data stream, subtracting the effects of the spring forces.
t=[tl1-t0 t2-t0 t3-t0]’*sc;
tu=[tl t2 t3)'*sc;

% Set up the ideal data set.
ideal0=[0 0 0 O 0];
ideall=.165*ones (1,5);
ideal2=.314*ones(1,5);
ideal3=.464*ones(1,5);
ideal=[ideall ideal2 ideal3]’;
ang=[ang0 ang0 ang0]’;

% Perform the fit using either:

% cd x"4 4+ ¢c2 x™2 + c0
% or

% cd x4 + c0

%

if fourth ==

c=polyfit ( (ang-ones(ang)*q0)."2, ideal./t, 2);
cl=[c(1l) 0 c(2) 0 c(3)]};
cor=t.*polyval(cl, (ang-ones(ang)*q0));
coru=tu.*polyval(cl, (ang-ones(ang)*q0});

else
c=polyfit{(ang-ones{ang)*q0)." 4, ideal./t, 1);
cl=[c(l) 0 0 0 c(2)];
cor=t.*polyval(cl, (ang-ones{ang)}*q0));
coru=tu. *polyval(cl, (ang-ones(ang)*q0)});

end

% Setting up for plots
names=[ ‘Actual '
'Measured’
'Fit ‘3;
ltypes=[ ‘o’
l+l
'x');

plot(ang*180/pi, t, ‘+b’); hold on; grid;
plot (ang*180/pi, cor, ‘xr’}):

plot (ang*180/pi, ideal, ‘ow’);
err=cor-ideal;

maxerr=max (err) ;

a=[-4:.01:4);
s=polyval(cl,a);

plot({a;a;al’*180/pi, ([.165;.314;.464]* (ones{(a) ./polyval (cl, a-ones(a)*g0)))‘);
hold off

title([tl ’'-Shoulder Torgue Calibration’])

xlabel (' Shoulder Angle (deg)’),ylabel(’'Torque (N-m)}’)

c=legndbig(names, 0,0,1000,1,1ltypes);

pause



Appendix D

State Transition Diagrams

This appendix contains the state-transition graphs for the Multi-Manipulator Free-Flying Space Robot
experiment. Implementing the transition graphs allows the robot to complete complicated tasks
autonomously. Although not explicitly indicated, all control is performed utilizing the adaptive rask-
space control structure.

The graphs depict the states as ovals, and the state transitions as arrows. A stimulus-and-transition-
routine pair is labeled at the base of each arrow; the pair is separated by a “/” character. If a transition
routine returns more than one value, causing a branch in the transition, the return values are labeled
near the arrow heads.

The state-transition graphs are separated into six (6) main functions: “initialization”, “payload
capture”, “rendezvous with object”, “deliver object”, “object motion”, and “robot motion”. Whenever
the robot is enabled, it executes the initialization sequence, checking the health of the system. The
robot carries out a payload capture in response to user request; if the payload object is not in range, the
robot first performs a rendezvous with the object. If the user requests the movement of the payload, the
robot executes the delivery of the object. It must also execute the “object motion” transitions to check
the final orientation of the payload; if the orientation is not achievable with the current manipulator

grasp, a swap is performed. Finally, if the user requests a base movement, the robot executes the “robot

motion” transitions.
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Singularity/
abort()
Abort/ SamplingStopped/
abort() abort()
activateSafety()

SafetyOFF
E Check Checking
ITor Gas and Electric Js,cyon Safety
Timer/
SafetyOFF activateSafety(
OK
Raise
Grippers
Always/
SearchTimeOut/ i
ereMisg() resetGrippers()
Looking RightFound AND LeftFound/ Raising
for Endpoints goingReady() Grippers
RightUp AND LeftUp/
Ready Nullo
RightHome AND LeftHome/
activateEndptSensors()
Homing Looking
Arms for Base
. . BaseFound/
;?:S;?HS‘TGAC“V“ activateJointSensors()

Activating
Joint Sensors

Figure D.1: Initialization Transition Graph

The robot system starts in the “Init” state and checks the safety switch, gas pressure, and
electrical voltage when sampling is started. When everything checks out, the grippers are raised
and the system makes sure that the robot base is being tracked. The motors and joint controller
are then enabled to bring the arms into a known “home” location. The local vision system must
find the endpoints before entering the “Ready” state. If an error occurs, the robot enters the
“Error” state, which transitions back into the “Init” state, and the process repeats. Additionally,
three global stimuli—Abort, Singularity, and SamplingStopped—brings the system to “Init”

from any other state.
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Rendezvous

Waiting
NotnRange o for In Range*
Moving Moving
i to Object

ObjectInView/
slewToObject()

Slewing

RightAtObj AND LeftAtObj/
trackObject()

Recom_Futchj/
updateTraj()

TrackTimer/
checkGraspQ

ToleranceMet

Stopping

RightDown AND LeftDown/
Object e

TrajComplete/
NullQ stopObject()

* States marked with an asterisk transition to the “Error” state in response to the
“ObjectoutOf View AND ObjectLost” stimulus. The transition routine is lostObject().

Figure D.2: Payload-Capture Transition Graph

The robot awaits the “Capture” or “Deliver” command in the “Ready” state, either of which
initiates the payload-capture transition routines. If the object is not in reach, the robot
branches to the “Rendezvous” set of transitions. Otherwise, the robot slews the arms to the
object—tracking the grip ports using PID control until the tolerance is met—Dbefore lowering
the grippers. The object is stopped smoothly, ending in the “Holding Object” state. If
the command was “Deliver”, the robot proceeds with the “Object Delivery” transitions. A
“Release” command forces the transition from “Holding Object” to “Raising Grippers”, which
is part of the “Initialization” transition graph.
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Object in View
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Object in Reach*
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* States marked with an asterisk transition to the “Error” state in response to the
“ObjectOutOfView AND ObjectLost” stimulus. The transition routine is lostObject().

Figure D.3: Object-Rendezvous Transition Graph

The robot must rendezvous with the object if it is out of reach. The robot plots an intercept
trajectory, and moves toward the object. The robot continues to update the base trajectory
until the object comes into view of the local vision system. If at any time, the robot decides
that it cannor reach the object, the robot aborts into the “Error” stare. When the object comes
into view, the robot waits for the the object to come into reach and slews the manipulators to
the object and enters the “Payload-Capture” transition graph. An “Error” occurs if the object
is lost by the vision systems.
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Null)
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ObjectTrajComplete/
Null)

DeliveryOutOfRange

DeliveryOutOfRange

RecomputeBaseTraj/
updateDeliveryTraj()

startDelivery()
“Release”/
releaseObject()

Figure D.4: Object-Delivery Transition Graph

If the robot is to deliver the payload and the destination is in the reach of the manipulators,
the robot goes directly to the “Object-Motion” set of transitions. Otherwise, it must stow the
object before plotting a base trajectory toward the destination. The robot continues to update
the base trajectory until it reaches the destination. If at any time, the robot determines that the
destination is out of range, it aborts with an “Error” condition. After reaching the destination
of the robot base, the robot proceeds with the “Object-Motion” transitions.
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Figure D.5: Object-Motion Transition Graph

The first step in moving the payload object into its final position is to check the grip orientation.
If it is achievable, the robot directly moves the payload into position and returns to the “Holding
Object” state. Otherwise, the robot either swaps the grip directly, or first moves the payload into
a favorable position before performing the swap. The swap is performed by releasing the object,
homing the arms, and recapturing the payload by looping back to the “Starting Capture” state.
Because the “Deliver” command is still in effect, the complete capture-and-delivery procedure
is repeated.
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“MoveRobot™/
startBaseMotion()

Starting
Base Motion

Always/
moveBase()

TrajComplete/
Null(

Figure D.6: Robot-Motion Transition Graph

This is the simplest transition of all. If the destination is reachable, the trajectory is computed,
and the robot base is moved. Otherwise, the command is ignored. The robot ends up in the
“Ready” state.



Appendix E

Setup Files

This appendix provides a sampling of the setup files used by the Multi-Manipulator Free-Flying Space
Robot during initialization. These files contain, for instance, the nominal physical parameters for the
robot, the adaptive update gains, and the controller gains for each control mode. Many more data files

are required to provide the full capabilities of the space robot.

E.1 Physical Parameters

# Name:

# properties.dat

¥

# Description:

# physical properties of the robot

#

# Written by: Vincent Chen November 1990

#

signalSet Masses
BaseMass kg 62.265
RAUpperLinkMass kg 1.9231
RALowerLinkMass kg 0.3382
LAUpperLinkMass kg 1.9231
LALowerLinkMass kg 0.3382
PayloadMass kg 1.01
LargePayloadMass kg 8.87

signalSet Inertias
Baselnertia kg-m~2 3.29218
RAUpperLinkInertia kg-m"2 0.02379
RALowerLinkInertia kg-m"2 0.00416
LAUpperLinkInertia kg-m"2 0.02379
LALowerLinkInertia kg-m"2 0.00416
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PayloadlInertia kg-m~2 0.007
LargePayloadInertia kg-m“2 0.108

signalSet Lengths
L_Clx m 0.184095
L_Cly m -0.184095
L_C2x m 0.184095
L_C2y m 0.184095
L_11 m 0.3048
L_12 m 0.2959
L_21 m 0.3048
L_22 m 0.2959
L_COx m 0
L_COy m 0
L_11ix m 0.0594
L_1ly m -0.002
L_12x m 0.1058
L_12y m 0
L_21x m 0.0594
L_21ly m 0.002
L_22x m 0.1058
L_22y m 0
L_OBJx m 0
L_OBJy m 0
L_GRIPrx m 0.111
L_GRIPry m 0
L_GRIP1x m -0.111
L_GRIPly m 0

signalSet SpringConstants
RS_SpringkK N-m/rad 0
RE_Springk N-m/rad 0
LS_SpringK N-m/rad 0
LE_SpringK N-m/rad 0
RS_SpringOffset rad -.78
RE_SpringOffset rad 1.57
LS_SpringOffset rad .78
LE_SpringOffset rad -1.57

E.2 Adaptive Control Gains

Name:

Description:

E R BE B NE BE B R

BTAdaptSigset.dat

Written by: Vincent Chen

Adaptive Controller parameter vector and gains.

26 October 1990

signalSet Parameters
Theta_0
Theta_1

28
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Theta_2
Theta_3
Theta_4
Theta_5
Theta_6
Theta_7
Theta_8
Theta_9
Theta_10
Theta_11
Theta_12
Theta_13
Theta_14
Theta_15
Theta_16
Theta_17
Theta_18
Theta_19
Theta_20
Theta_21
Theta_22
Theta_23
Theta_24
Theta_25
Theta_26
Theta_27

signalSet ParametersMax 28
ThetaMax_0 100
ThetaMax_1 2
ThetaMax_2 2
ThetaMax_3 1
ThetaMax_4 .1
ThetaMax_5 1
ThetaMax_6 .1
ThetaMax_7 1
ThetaMax_8 .1
ThetaMax_9 1
ThetaMax_10 .1
ThetaMax_11 10
ThetaMax_12 1
ThetaMax_13 .1
ThetaMax_14 1
ThetaMax_15 .1
ThetaMax_16 20
ThetaMax_17 .1
ThetaMax_18 .1
ThetaMax_19 1
ThetaMax_20 .05
ThetaMax_21 .05
ThetaMax_22 .05
ThetaMax_23 .05
ThetaMax_24 .05
ThetaMax_25 .05
ThetaMax_26 .05
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signalSet ParametersMin 28

signalSet ParameteraAdaptiveGains

ThetaMax_27

ThetaMin_0
ThetaMin_1
ThetaMin_2
ThetaMin_3
ThetaMin_4
ThetaMin_5
ThetaMin_6
ThetaMin_7
ThetaMin_8
ThetaMin_9
ThetaMin_10
ThetaMin_11
ThetaMin_12
ThetaMin_13
ThetaMin_14
ThetaMin_15
ThetaMin_16
ThetaMin_17
ThetaMin_18
ThetaMin_19
ThetaMin_20
ThetaMin_21
ThetaMin_22
ThetaMin_23
ThetaMin_24
ThetaMin_25
ThetaMin_26
ThetaMin_27

Gamma_0
Gamma_1
Gamma_2
Gamma_3
Gamma_4
Gamma_5
Gamma_6
Gamma_7
Gamma_8
Gamma_9
Gamma_10
Gamma_11
Gamma_12
Gamma_13
Gamma_14
Gamma_15
Gamma_1l6
Gamma_17
Gamma_18
Gamma_19
Gamma_20
Gamma_21

.05

0
-2
-2

o

o1 O 1 Ol

I OO o000 O0OI

[}
=

-.05
-.05
-.05
-.05
-.05
-.05
-.05
-.05

0

OO0 00000000 OCOOOO

[ &
w
o

.01
.01
.06
0
0

28
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Gamma_22
Gamma_23
Gamma_24
Gamma_25
Gamma_26
Gamma_27

QOO0 0000

signalSet SpringUpdateGains 8
RSK 0
RSO
REK
REO
LSK
LSO
LEK
LEO

OO0 O0OO0OO0OO

signalSet BTNumParmsUpdate 1
nParmsUpdate 28

# trailing was 1

adaptiveDataSet BTRobotParms 28 Sample
nUpdate: BTNumParmsUpdate
trailing: 1
params: Parameters

maxParams: ParametersMax
minParams: ParametersMin

gains: pParameterAdaptiveGains
errors: JinvFilteredErrors
regressor: Yy

transpose: 1

E.3 Base-Relative Object-Control Gains

Name:
objectControlBR.dat

Description:
Base-relative object control signals and gains.

Written by: Vincent Chen May 1991

3= = W W W W N

signalSet DesObjectPosBR 2
desObjectPosXBR meters
desObjectPosYBR meters

signalSet DesObjectOrientBR 1
desObjectOrientBR radians

signalSet DesObjectVelBR 2
desObjectVelXBR m/sec
desObjectVelYBR m/sec
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signalSet DesObjectAngVelBR
desObjectAngVelBR rad/sec

signalSet DesObjectAccBR
desObjectAccXBR m/sec”2
desObjectAccYBR m/sec”2

signalSet DesObjectAngAccBR
desObjectAngAccBR rad/sec”2

signalSet ObjectPosGainsBR
objectPosGainXBR 55
objectPosGainYBR 55

# Note velocity gain selected for critical damping: Kv

signalSet ObjectVelGainsBR
objectVelGainXBR 15
objectVelGainYBR 15

2 * sgrt(Kp)

# Note: These gains for the object are unstable if you use the 2Hz estimator

# and vision-based velocity feedback.

signalSet ObjectOrientGainsBR
objectOrientGainBR .55

# Note velocity gain selected for critical damping: Kv

signalSet ObjectAngVelGainsBR
objectAngVelGainBR .15

signalSet ObjectPosFeedbackBR
objectPosFeedbackXBR
objectPosFeedbackYBR

signalSet ObjectOrientFeedbackBR
objectOrientFeedbackBR

signalSet ObjectPosControlBR

objectPosControlXBR m/sec”2
objectPosControlYBR m/sec”2

signalSet ObjectOrientControlBR

objectOrientControlBR l/sec”2

signalSet ObjectDestBRPos
objectDestBRPosX meters 0
objectDestBRPosY meters 0

signalbet ObjectWorkSpaceCenter
objBaseX meters 0.48
objBaseY meters 0.0

1

1

2 * sqgrt(Kp)

A S5Hz estimator works fine.
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E.4 Endpoint-Control Gains

# Name:

# endptControl.dat

#

# Description:

# Endpoint control gains and signals.

#

#

signalSet RAdesEndptPos 2
RAdesEndptXPos meters 0
RAdesEndptYPos meters 0.2

signalSet RAdesEndptVel 2
RAdesEndptXvel m/sec
RAdesEndptYVel m/sec

signalSet RAdesEndptAcc 2
RAdesEndptXAcc m/sec”2
RAdesEndptYAcc m/sec”2

signalSet LAdesEndptPos 2
LAdesEndptXPos meters O
LAdesEndptYPos meters -0.2

signalSet LAdesEndptVel 2
LAdesEndptXvVel m/sec
LAdesEndptYVel m/sec

signalSet LAdesEndptAcc 2
LAdesEndptXAcc m/sec”2
LAdesEndptYAcc m/sec”2

signalSet RAendptPosGains 2
RAendptPosXGain 20
RAendptPosYGain 20

signalSet RAendptVelGains 2
RAendptvVelXGain 6
RaendptVelYGain 6

signalSet RAendptIntGains 2
RaendptIntXGain 40
RaendptIntYGain 40

signalSet LAendptPosGains 2
LAaendptPosXGain 20
LAendptPosYGain 20

signalSet LAendptVelGains 2
LAendptVelXGain 6
LAendptVelYGain 6

signalSet LAendptIntGains 2
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LAendptIntXGain 40
LAendptIntYGain 40

signalSet RAendptFeedback
RAendptXfeedback
RAaendptYfeedback

signalSet LAendptFeedback
LAendptXfeedback
LAendptYfeedback

signalSet RAendptControl 2
RAendptXcontrol m/sec”2
RAendptYcontrol m/sec”2

signalSet LAendptControl 2
LaendptXcontrol m/sec”2
LAendptYcontrol m/sec”2

E.5 Joint-Control Gains

November 1990
May 1991

o N

o

oNn

# Name:

# jointPDcontrol.dat

#

# Description:

¥

# Written by: Vincent Chen

# Revised: Vincent Chen

# Modified for BTController.

#

#

signalSet RAJointAngleGains
RAShlderPosGain
RAElbowPosGain

signalSet LAJointAngleGains
LAShlderPosGain
LAElbowPosGain

signalSet RAJointRateGains
RAShlderVelGain
RAElbowVelGain

signalSet LAJointRateGains
LAShldervVelGain
LAElbowVelGain

signalSet RAdesJointAngles
RAdesRtShlderPos rad
RAdesRtElbowPos rad

signalSet LAdesJointAngles
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LAdesRtShlderPos rad 1
LAdesRtElbowPos rad -1
signalSet RAdesJointRates 2
RAdesRtShlderVel rad/sec 0
RAdesRtElbowVel rad/sec 0
signalSet LAdesJointRates 2
LAdesRtShldervVel rad/sec 0
LAdesRtElbowVel rad/sec 0
signalSet RAdesJointAccel
RAdesShlderAcc rad/sec”2
RAdesElbowAcc rad/sec”2
signalSet LAdesJointAccel
LAdesShlderAcc rad/sec”2
LAdesElbowAcc rad/sec”2
PDdataSet RAJointPDcontroller
pos: RAJointAngles
vel: RAJointRates
output: RAJointTorques
Kp: RAJointAngleGains
Kv: RAJointRateGains
desPos: RAdesJointAngles
desvel: RAdesJointRates
orientation: 0
PDdataSet LAJointPDcontroller
pos: LAJointAngles
vel: LAJointRates
output: LAJointTorques
Kp: LAJointAngleGains
Kv: LAJointRateGains
desgPos: LAdesJointAngles
desvel: LAdesJointRates
orientation: 0

E.6 Base-Control Gains

# Name:

# baseControl.dat

#

# Revised: Vincent Chen May 1991
# Modified for own use.

# >
signalSet DesBasePos 2

desBasePosX meters
desBasePosY meters
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signalSet DesBaseOrient 1
desBaseOrient radians
signalSet DesBaseVel 2
desBaseVelX n/sec
desBaseVelY m/sec
signalSet DesBaseAngVel 1
desBaseAngVel rad/sec
signalSet DesBaseAcc 2
desBaseAccX m/sec”2
desBaseAccY m/sec”2
signalSet DesBaseAngAcc 1
desBaseAngAcc rad/sec”2
signalSet BasePosGains 2
basePosGainX 31
basePosGainY 31
signalSet BaseVelGains 2
basevVelGainX 90
basevVelGainy 90
signalSet BaseOrientGains 1
baseOrientGain 0.6
signalSet BaseAngVelGains 1
baseAngVelGain 2.0
signalSet BasePosFeedback 2
basePosFeedbackX
basePosFeedbackY
signalsSet BaseOrientFeedback
baseOrientFeedback
signalSet BasePosControl 2
basePosControlX m/sec”2
basePosControlyY m/sec”2
signalSet BaseOrientControl

baseOrientControl 1l/sec”2
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